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How big is the unit cube? “1?” Seems obvious,
right? Let me ask you another way: Where is the
unit cube? “0?”

Or: How big is the unit sphere? “1?” Imagine I am
asking you these questions where I pounce upon
you with the next question just as you start to an-
swer the first. To keep you off your balance, I
mean. Where is the unit sphere? “0?” Which is big-
ger, the unit cube or the unit sphere? Sweating yet?

“Officially” speaking, the unit cube has edge length
1, and has all non-negative home coordinates, like
({0, 1}, {0, 1}, {0, 1}). According to those same math
referees, the unit sphere has radius 1, and its cen-
ter at (0, 0, 0).

So the unit cube fits easily within the unit sphere.
I don’t know about you, but I always imagine the
idealized cube and sphere centered on the origin,
with the sphere tucked inside the cube, touching its

sides at their centers. (footnote: The long-running ThursDz's
Beer Society of Math Geniuses decided that what I am actually imag-
ining is not the unit cube but the “L-infinity unit sphere,” which I
think may be true but sounds like I'm just trying to be an asshole.)

Of course we can only fit one unit cube at a time in

the unit sphere, but there’s a lot of space left over.

You could ask yourself, if I have n cubes, what's

the smallest sphere I could fit them within? Would

it surprise you to find out that for n=6, the tightest

arrangement is not a 3x2x1 grid? Or a 2x2 slab with

a centered cube above and below? Or even some-
thing symmetrical? For example, this arrangement

fits in a sphere that’s a little smaller:

What the hell, right? I found this by computer

search (namely: after trying to solve the problem

myself, I searched on the internet using a com-
puter for spoilers, and found somel®). I love it! (Pla-
tonically!) This is how it goes with me: I do enjoy

a beautiful math result where everything is in its

right place, but to be honest, what really titillates

me is when the problem is beautiful but the solu-
tion is upsetting. I call this a “Platonic Horror.” One

of the things I like about it is that any clear thinker

will imagine cubes and spheres, and ask a simple

well-formed question like that. You could contrast

this with man-made horrors like “the conventional

unit cube and unit sphere are apparently using

the word ‘unit’ differently,” or “IEEE-754 denor-
mals”[®l or “U+FE18 PRESENTATION FORM FOR UERTI-
CAL RIGHT WHITE LENTICULAR BRAKCET”Ul. Aliens

would never think to spell the word “bracket”

wrong in the formal name of a Unicode charac-
ter. But they would think about putting cubes in

spheres, and then find out that it's kinda messed

up, and then some of them would find it strangely

titillating that the solution is not “nice,” and they

probably have their own version of SIGBOVIK out

there on EAO-UI'©X 11 where they have giggled

about this specific fact, and I like that idea.

Anyway, now that I've gotten the “Dice in Sphere”
pun out of the way, we can move onto the real
topic of this paper: Dice in Dice.

So, um, why is so much energy wasted on trying
to wreck the world? Something about being super
rich and powerful seems to attract people to ass-
hattery, or assholery, or assault, or making an ass
out of u and me. All throughout history we have
had this problem. If I were super rich, I would



just hang out with my smart friends and do math.

Right? One rare example of this seemingly work-
ing out well was the Prince called Rupert, formally

Prince Rupert of the Rhine, Duke of Cumberland, KG,

PC, FRS (not off to a good start, to be honest, but

maybe all the appellations are semi-meta-ironiclike

Dr. Tom Murphy VII Ph.D.). I didn’t learn much

about this prince (he’s been dead for hundreds of
years) but once he retired from being a war sailor,

he “converted some of the apartments at Windsor

Castle to aluxury laboratory, complete with forges,

instruments, and raw materials, from where he

conducted a range of experiments.”®! Yes! Correct!

This is the same fellow who learned about Prince

Rupert’s Drop and then did not protest when peo-
ple attributed its invention to him (hard to blame

them for the mistake with a name like that). Then

during what I imagine was a pleasant evening in

the pub arguing with his friends over presumably

nasty 17th-century beer, he came up with the fol-
lowing question: Can you pass a cube through an-
other cube of the same size? The answer is, surpris-
ingly: Yes! If you rotate the cube so that it looks

like a square (the small way), and rotate the other

so that it looks like a hexagon (the big way), then

you can fit it through:

This became known as Prince Rupert’s Cube, and
the cube donut that’s left over looks like this:

Late one night I was admiring the Wikipedia ar-

ticle on the Dodecahedron, my favorite Platonic
solid. On this page I was reminded that the Do-
decahedron is Rupert, like the cube. This seemed
right, since if the cube has a pleasing property and
the Dodecahedron is awesome, it should also have
that pleasing property.

Indeed, all the Platonic solids have the Rupert
property. The Platonic solids are beautiful and so
the fact that all of them have this pleasing prop-
erty recommends it further. Then I read the phrase
“it has been conjectured that all 3-dimensional con-
vex polyhedra have this property,” which made
my brain feel surprised but happy. I might have
even gotten to sleep, had I stopped reading at that
moment. But then I read “of the 13 Archimedean
solids, it is known that at least ten have the Rupert
property,” and this made my brain surprised and
upset. How could it be the case that we think this
is true for all convex polyhedra (infinitely many,
and mostly gigantic weird ugly ones) but we don’t
know for some 3 simple beautiful ones? Did no-
body check? It seemed to me it would be pretty
easy to write a search procedure that would look
for them, and it also seemed like if we think it’s
possible, it would be easy to find solutions.

Here were my Naive Heuristics:

* This is a continuous problem. If you have some
way of fitting the shape through itself, then there
will be some adjacent small variation on that that
will also work. Problems where the solution needs
to be exact (e.g. problems on integers) tend to be
much harder. These solutions won’t need to be ex-
act because of NO TOUCHING!

* This might be a problem that not that many peo-
ple have tried (only stamp collectors), since serious
mathematicians would be interested in a real solu-
tion (i.e. a proof that the general conjecture is true).
* I am definitely not the best mathematician to
have tried this, but it’s possible that I'm the best
programmer to try it, and plausible that nobody
has tried it with a very large and hot GPU.

e If I find solutions, great; we can check those off
the list. If I don’t, I'll learn something, because it
doesn’t seem like it should be conjectured to be
true but hard to find.

* I can whip this up in a day (or maybe a week-
end) and then put it aside if I can’t solve it.

So I set aside two and a half months to work on



it.

Platonic, Archimedean, and Catalan
solids

The convex solids called Platonic all have faces
made from the same regular polygon (like a square
or equilateral triangle). There are only five: The
tetrahedron, cube, octahedron, icosahedron, and
dodecahedron. (For images of these shapes you
can see the results section at the end of the paper.)
I love them! (Platonically!) (And also sexually!)
It's kind of amazing that there are only five, but
here’s a good way to feel comfortable with that
idea. First, remember that regular hexagons fit to-
gether perfectly to tile the plane. If you tried to put
septagons or octagons together, they would not
fit; hexagons are the last ones that fit. With five or
fewer sides, you can’t tile the plane, but you can
fold them over and start making a polyhedron (3D
shape). This tells us that a Platonic solid must have
faces that are pentagons, squares, or triangles. The
pentagon is pretty big so there’s only one way to
put them together. Same for the cube. The triangle
has three ways, but it’s not too hard to see that you
are limited to these three if you try to work it out.

These solids are named after Plato, but it's obvi-
ous to me that any clear thinker would eventually
discover these; if there are aliens somewhere, then
they know about the same five shapes, though
probably not by the same name unless they have
been creepily spying on us, or perhaps if Plato was
not all that he seemed!

There are two kinds of convex solids that are almost
as good as the Platonic ones: The Archimedean
and Catalan solids. You might want to look at the
results section to see pictures of these, since they
are cool and you probably like cool shapes. The
Archimedean ones have faces that are regular poly-
gons (but more than one type), and moreover are
vertex transitive. Vertex transitivity means approxi-
mately that every vertex on the polyhedron has the
same shape (the connecting edges and faces are
the same, just maybe rotated). One way to think
about this is that you could 3D print some connec-
tors with holes in them and assemble the solid of
connectors and straws, and you would only need
one kind of connector. For a similar reason that
there are only five Platonic solids, there are only

13 Archimedean solids.

Each Archimedean solid has a dual, which is a
Catalan solid. These are perhaps cooler. Catalan
solids have symmetric vertices and are face transi-
tive; the faces are not regular polygons but if you
cut out polygons from paper you would only need
one shape to make these. There are also thirteen
of these.

The Archimedean and Catalan solids are canonical
and probably also known to aliens. There are some
further generalizations (like the Johnson solids),
but each time we get weaker properties, weirder
shapes, and more of them. It becomes less likely
that Aliens are out there holding their own SIG-
BOVIK conference and thinking about the same
thing. So in this paper I'm only concerned with the
Platonic, Archimedean, and Catalan solids, which
I'll abbreviate P/A/C.

All of the Platonic solids have the Rupert property
(“are Rupert”), which we’ll define more carefully
in the next section. Upsettingly, only most of the
Archimedean and Catalan solids are known to be
Rupert. The unknown ones I'll call the “wishlist”
polyhedra in this paper; they are:

The Archimedean solid called the rhombicosido-
decahedron, and its dual, the Catalan solid called
the deltoidal hexecontahedron; the Archimedean
snub dodecahedron and its dual, the Catalan pen-
tagonal hexecontahedron; and the Archimedean
snub cube. Upsettingly: Its dual, the pentagonal
icositetrahedron, does have the Rupert property!

Related work which I did not read

I should mention: The reason that we know that
solutions to most of these exist, and that they are
written about on Wikipedia to keep me up late at
night, is due to the related work—a.k.a. the spoilers.
Since I am highly spoiler-averse and writing for
SIGBOVIK, whose prestigious standards and prac-
tices transcend pedestrian norms like a related
work section, I did not look at the related work at
all while doing this research. It might take the fun
out of doing it myself. It is, after all, re-search!

I can however cite a few spoilers for your conve-
nience. 110111



The Rupert problem

As we said, a solid is “Rupert” if you can pass an
identical copy of the solid clean through itself, leav-
ing a proper hole. It’s easy to think of non-convex
shapes where it's clearly not possible, and con-
vex shapes that aren’t polyhedra (like the sphere)
where it’s clearly not possible. The conjecture is
that all convex polyhedra are Rupert.

This problem is pretty easy to specify precisely.
The shape in question is a convex polyhedron,
which is just defined by its set of vertices. For gen-
eral polyhedra you also need to specify how those
vertices are connected (the edges and faces), but
convex polyhedra are easier. There’s just one way
to stretch a “skin” over the points, so we don’t even
need to describe it (or even think about it). We'll
take two copies of the points. One is the “outer”
polyhedron and one is the “inner”. The goal is to
find some way of arranging them so that the inner
can pass through the outer.

The inner one will pass through the outer along
some line, so we say without loss of generality
that this is the z axis. We'll use the computer graph-
ics convention that the camera is located at some
positive z, looking down at the shapes, which are
near the origin, and the inner polyhedron is mov-
ing along this same line of sight. Maybe like it’s
shooting out of our eyeballs as a kind of abstract
weapon of geometry. A Platomic Bomb. Viewed
this way, what it means for the inner shape to be
able to pass through the outer is that the two di-
mensional “shadow” of the inner shape is entirely
contained within the shadow of the outer shape.

We'll specity the arrangement of the polyhedra
as a rotation and translation; together these are a
rigid frame (hereafter just “frame”). Because we
know we're traveling along the z axis, the z com-
ponent of the translations are unimportant and we
can just consider 2D translations. Moreover, since
we just care about the relative positions of the ob-
jects, we can say that the outer polyhedron is fixed
at (0, 0). We need to be able to rotate both shapes
arbitrarily, though.

The inner shadow being completely contained
within the outer shadow is intuitive, but we should
be more precise. The convex hull of a set of 2D
points is the minimal convex polygon that contains
them all (here “contains” includes the boundary);

this is the same idea as the minimal skin around
the vertices of our convex polyhedron. To get the
shape of the shadow, we just project the object to
2D along the z axis (easy: (X, y, z) just becomes (X,
y)) and then compute the convex hull of the points
using standard algorithms. Now we can just ask
whether the inner hull is entirely contained within
the outer hull. Since the outer hull is convex, this
amounts to a standard test that each point on the
inner hull is contained within a convex 2D poly-
gon. You can find slightly buggy code for this all
over the internet. (There are many alternative for-
mulations, some of which are discussed below.)

The boundary condition here is very important.
The inner points must be strictly contained within
the outer hull (less-than, not less-than-or-equal),
never exactly on the boundary or coincident with
an outer vertex. If we allow them to be on the hull,
then carving the inner through the outer would
make the residue disconnected (perhaps dramat-
ically so). It also makes the problem trivial: If the
outer and inner have the same frame, then their
shadows are also the same, and the inner one is
trivially (weakly) inside the outer. If you think this
amounts to “passing one cube through the other
and leaving a proper hole,” then you and I dis-
agree about what proper hole means.

So to solve the Rupert problem for some shape,
you need to find two rigid frames that satisty the
above (and we know that one of the translations
can be (0, 0, 0) and the other (x, y, 0)). How do we
find such frames?

If you have a fast enough test, sampling will suffice
for easy objects like the cube. Here you just gen-
erate random frames and test whether the condi-
tion holds. You can try all orientations and reason-
able bounds on the translation (you do not want to
translate more than the diameter of the cube, for
example, or it will definitely not go through it)!

Generating random orientations

Generating random numbers is easy using float-
ing point roundoff error.'?l How do you generate
a random rotation (orientation)? There are a few
different ways to specify a rotation. You can use
Euler angles, which are three parameters that give
the rotation around the x, y, and z axes (“pitch,”
“roll,” and “yaw”; see Figure 1). This approach ac-
tually sucks (famously, Euler was not that good at



math). You can get all orientations this way, but

you will get some orientations more often than oth-
ers (this is related to the phenomenon of “gimbal

lock”). Maybe that is okay for you (or Eu-ler) but I

want all orientations to be equally likely.

Roll Pitch Yaw

& QP
catroll pitcher door

Figure 1. Wikipedia'¥ provides this useful mne-
monic for remembering which axis corresponds to
each of the three words. The pitcher makes sense,
since you famously use a pitcher by holding the
handle away from you and turning your wrist to
pour diagonally towards yourself. But door must
just be trolling, right?

A good way to do this is using Quaternions, the
even more mysterious second cousins of the com-
plex numbers. I will not try to give you an intuition
for quaternions (since I do not really have one) but
they can be used as a four-parameter representa-
tion of orientations that will leave you happy (and
puzzled) instead of sad (and puzzled). Facts to
know about the Quaternions:

* Most people don’t capitalize Quaternions.

* Like complex numbers where you have a + bi,
here we have a + bi + ¢j + dk. The parameters are
(a, b, ¢, d) and i, j, k are “even more imaginary”
“constants” that have some impossible relations,
like i* = -1 but also ijk = -1.

* You can just think of a quaternion as a
four-dimensional vector (a, b, ¢, d). If this is a
unit-length vector, then it represents an orienta-
tion. There are exactly two unit quaternions repre-
senting each unique orientation in 3D. No gimbal
lock and no favorites.

A good —but not great—way to generate random
4D unit vectors is to generate random points on a
4D hypersphere, because these are the same thing.
There are very fancy ways to do this, but you run
the risk of getting the math wrong, or head explo-
sion etc., so I recommend rejection sampling. Rejec-
tion sampling is a very robust way to generate uni-
form samples in some set. What you do is generate

random points inside some domain that contains
the target set, and throw away points that aren’t in
the target. For example, to generate points in a unit
circle, you can generate points in the 2x2 square
(it’s not the unit square) that contains that circle.
1t/4 of these points will be in the circle, and so you
get samples at an efficiency of about 78.5%.

To generate points inside a sphere, you do the
same thing, but in a 2x2x2 cube. This sphere has
volume 4m/3 and the cube has volume 8, so you
get samples at an efficiency of about 52.4%.

To generate 4D points inside a 4D hypersphere

, you do the same thing, but now the
hypervolume is ?/2, and the 4D hypercube has hy-
pervolume 16, so you get samples at an efficiency
of about 30.8%.

Upsettingly, as we increase dimensions, the hy-
pervolume of the n-dimensional hypersphere
approaches zero (!?) and the n-dimensional



hypercube’s volume grows exponentially, so this
technique approaches perfect 0% efficiency.

O \O
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Fortunately, we only need 4D vectors, and 30%
efficiency is fine because my computer can calcu-
late like 1 billion samples per second and I only
need two.

The two samples give the orientations of the outer
and inner polyhedra, and we also pick random po-
sitions. We then project to 2D, compute the con-
vex hulls, and see if the inner hull is inside the
outer hull.

The convex hulls

The 3D shapes are convex, and so their 2D shad-
OWS are convex.

Rather than just working with the set
of points, their boundary polygon is a much more
convenient representation of the shadow. Here is a
shadow of the icosahedron. The darker boundary
polygon is its 2D convex hull:

Computing the convex hull is also “standard,”
meaning that you can find lots of slightly buggy
implementations of various algorithms on the in-
ternet. The bugs are usually because the routines
are intended for computer graphics and so they
don’t have to “work,” and because the algorithms
are conceptualized in the mathematical world
where when you look at a point that’s really close
to a line segment, the point stays on the same side
of the line when you look at it from different direc-
tions. This is unfortunately not the case for naive
implementations using floating point. It usually
“doesn’t matter that much,” or “just add a magic
constant you named epsilon,'*” but unfortunately
when you are working with extremely regular
shapes like Platonic solids, you will frequently get
points that are colinear or coplanar and exercise
the too-optimistic beliefs of the code you found. So
this is another good way to make your afternoon
project take several months.

You only need to compute the outer hull; you
can then just check that all of the inner shadow’s
vertices are inside it. But I found it was faster
to compute a convex hull for the inner polyhe-
dron as well. That way you only need to do the
point-in-polygon test for the points on the inner
hull. The point-in-polygon test is standard; we just
have to make sure we are testing that the points
are strictly inside, and not on the hull itself.

Optimizing

Now we can test whether some random orienta-
tions and positions (frames) demonstrate the Ru-
pert property. It is easy to find solutions for the
cube by just sampling. But of course we want to
make it faster, first of all just for the heck of it,
but also so that we can solve the unknown cases,



which are presumably harder.

I started with black-box optimization, again using
my own twisted variant of BiteOpt.I'*l Black box
optimization is good for people like me and Euler
who are bad at math. The interface to such an opti-
mizer is a function like

double F(double a1, double a2, ..., double an)

For some fixed n. The optimizer doesn’t know
what the parameters mean; its job is just to find the
arguments (a1, ..., an) such thatF (a1, ..., an) has
the smallest value. This is of course impossible in
general,

but for many well-behaved
functions these optimizers are nonetheless able to
do a good job.

Here the arguments will be the orientations of the
two polyhedra and the position of the inner one.
We can represent the orientations with quaternions
(four parameters each) and the position as the (x,
y) offset, totaling ten parameters.

The optimizer does need some kind of surface
to optimize over; it does not work well if there is
just a single point where the function returns -1
and it is a flat 0 everywhere else. I tried several ap
proaches here. The one that worked best for me
was to take all the vertices on the inner hull that
are not inside the outer hull, and sum their dis-
tance to the outer hull. This prefers the vertices
to be inside where we want them, and increases
the penalty as they get further outside. It is essen
tial to add a nonzero error when the point is not
strictly inside; if the point is exactly on the hull or
the distance rounds to zero, we still need to add a
small positive value. Otherwise the optimizer will
quickly find degenerate “solutions” such as setting
both orientations the same.

The other rub is that the optimizer wants to try
any value (within specified bounds) for the argu-
ments, but we need each orientation to be a proper
unit quaternion. Simply normalizing the four in-
puts would work, but as we observed before, ran-
dom samples in this parameterization are not uni-

formly random orientations. My approach here is
to first choose actually random quaternions for the
outer and inner shape before beginning optimiza-
tion. I then optimize within fairly narrow bounds
(like -.15, +.15) for the quaternion parameters, and
add that as a “tweak” to the random initial quater-
nion, normalizing to get a proper orientation. This
is still not uniform, but it is locally closer to uni-
form. Since we will try optimization millions or bil-
lions of times from uniformly random starting ori-
entations, we will get good coverage of all orienta-
tions. Other parameterizations of the orientation
are possible. It is definitely desirable to have fewer
arguments (as the complexity naively grows expo-
nentially in the number of optimization parame-
ters), but simply using the three-parameter Euler
angles runs into the aforementioned problems.

It works!

Anyway, that works! This was like, the first week-
end of the project. It’s able to find solutions to the
cube in milliseconds, and so I added more polyhe-
dra to the collection, and solved those in millisec-
onds as well.

One of the most tedious parts of this was getting
all of the polyhedra represented in computer form.
I was somewhat surprised that the formulas for
these things often involve wacky irrational coordi-
nates like the “tribonacci” constant, which is like
the Fibonacci (Fi- means two, like in the number
Five) but where we take the sum of the previous
three numbers instead of two. The ratio of terms
converges to:

(1 +3(19 + 3v33)) +3(19 - 3V33)) / 3

Like, I would expect V2 stuff. But I guess I should
not have been surprised by that, because that’s
just math. Anyway, since these are all convex poly-
hedra, at least you don’t need to explicitly spec-
ify the connectivity of the vertices. I just compute
the 3D convex hull (using a slow polynomial-time
search for coplanar vertices where all the points
are on one side of the plane) to get the faces; it’s
okay that this is slow because you only need to do
this once at program startup time.

Once all the polyhedra are in the computer, I eas-



ily confirmed what we already knew: The Platonic
solids, ten of the Archimedean solids, and eleven
of the Catalan solids, are Rupert.

Alternate solvers

Of course we should check uniformly random con-
figurations, but I tried some other approaches as
well:

Max. This first optimizes the outer shadow so
that it maximizes its area. We then perform opti-
mization only on the inner shadow. Intuitively,
you want the outer shadow to be “bigger” and the
inner shadow “smaller,” so this makes sense as a
heuristic and reduces the number of parameters.
Largest area does not mean it is best at fitting a
given inner shape, though. This strategy can solve
all the polyhedra (with known solutions) except:
triakis tetrahedron.

Parallel.  Thinking about making the inner
shadow as small as possible, we see that we often
(always?) reach a numeric minimum when at least
one face is parallel to the projection axis; this face
then becomes zero area in the shadow. This strat-
egy chooses two non-parallel faces of the inner
polyhedron at random, and then orients the poly-
hedron such that these are both parallel to the z
axis. It also rotates the polyhedron around the z
axis such that one of these faces is aligned with
the y axis (this doesn’t really change anything ex-
cept to make the numbers rounder and the hulls
easier to interpret, e.g. the cube will always be an
axis-aligned square). Then we just optimize the
outer orientation and position to fit around this
hull. This strategy can solve all the polyhedra ex-
cept: tetrahedron, triakis tetrahedron.

Figure 2. The dodecahedron with two non-parallel

faces aligned to the z axis.

Origin. Optimize both rotations, but leave both
polyhedra centered on the origin. This reduces the
number of parameters, although the translation
parameters are the best behaved of the bunch (op-
timizing the translation parameters alone is actu-
ally a convex problem). The main reason to do this
is to see whether there are always solutions that
have this form. It does not appear to be the case:
The tetrahedron-like shapes seem to require trans-
lation.

This strategy can solve all the polyhedra ex-
cept: pentagonal icositetrahedron, tetrahedron, tri-
akis tetrahedron, truncated tetrahedron.

Special. Combines parallel and origin, leaving
only the other rotation to optimize. Like the ori-
gin approach, the main reason is to see whether
solutions of this form exist; it turns out to work in
all the same cases as the origin method. This is all
of the polyhedra except: pentagonal icositetrahe-
dron, tetrahedron, triakis tetrahedron, truncated
tetrahedron.

GPU solver

At this point, I was easily solving the polyhedra
with known solutions, like each in a few hundred
milliseconds, and not at all solving the other ones.
I figured one possibility was that these were just
harder, and so I needed to be able to optimize the
solver to try a lot more times. One way to try a lot
more times is to do it on a Geometric Polyhedron
Unit. Part of the way I justify to myself buying the
world’s physically largest

and
hottest GPU (at the time), the NVidia RTX 4090, is
that I can use it for important tasks like this and
not just sniping simulated soldiers in glorious 4k
HDR at 144fps. So I rewrote the solver in OpenCL.

In some ways this problem is well suited to the
GPU; it excels at parallel numerical tasks on
floating-point numbers. The polyhedra here are
too small to benefit from parallel computation on
their vertices. But we can easily get massive data
parallelism by trying multiple optimization in-
stances in parallel. On the other hand, the convex
hull calculation and black box optimizers are not



natural for the GPU (OpenCL does not really sup-
port recursion!).

To test whether the inner shadow is within the
outer shadow, I replaced the convex hull-based test
with one that is worse but more easily parallelized.
For each polyhedron I generate its triangulation,
where each face is made with triangles (this is triv-
ial to do with triangle fans because they are convex
polygons). Now observe that when I project these
triangular faces to the 2D shadow, any point that
is contained in the shadow will be contained in at
least one of these projected triangles. I can check
all of the triangles in parallel. I can also compute
the error for a point as its shortest distance to any
triangle (like we previously used the shortest dis-
tance to the hull). The point-in-triangle tests must
be strict as before, to prevent points exactly on the
outer boundary from counting. Alas, this test is
not quite correct here: It is possible for an interior
point to land exactly and only on interior edges of
the triangulation. Take an axis-aligned cube, for
example; the point at the exact center of its square
shadow will lie on edges of the triangulation, no
matter which one you use. This is not ideal, but it
only gives us false negatives (failing to find a solu-
tion if one exists), which is not a serious problem.

|

Figure 3. Left: A cube may be triangulated like this

(only top and bottom triangulations shown for clar-
ity). Right: Viewed from the top, the center point

is not strictly within any face triangle.

Because I did not want to port the black-box opti-
mizer, and because we can do better anyway since
we understand the problem being optimized, I im-
plemented a proper gradient descent optimizer
for the GPU. This subject is well documented so I
will not belabor it here, but I performed “approxi-
mate numerical differentiation” to compute the de-
rivative with respect to each parameter indepen-
dently. This involves evaluating the function one
additional time for each parameter (with a small
tweak), assuming that the slope is locally linear.

It's not too bad to implement, but since this prob-
lem has 10 optimization parameters, it is a sig-
nificant amount of additional evaluation. I don’t
think this problem lends itself well to analytical
derivatives (even though most of the space is very
smooth, the regions of interest are near the bound-
aries, either as a point moves into its own shape’s
shadow, or across the other’s hull), but maybe you
or someone else who’s smarter than me could fig-
ure it out. Lazy people would use automatic differ-
entiation and might be happy with that.

Anyway, this all works too! It is indeed faster
than the CPU version, although it is harder to
play around with algorithmic tweaks and it scales
worse to polyhedra with larger triangulations. I
mainly found solutions using the CPU methods,
and mainly because running things on the GPU
means I can’t simultaneously use my computer for
other important activities like over-the-top violent
first-person shooter games.

Solved!

And then I found a solution for one of the wishlist
polyhedra! Actually all of them. I didn’t get too ex-
cited, though; there had been many false positives
so far (due to bugs), and the reported numbers
were like this:
outer frame:
-0.99999999999999978,-3.7558689392125502e-16,-3.584758111698L4005e-08,
3.7558689392125502e-16,1.0000000000000002,-2.0954657592967021e-08,
3.5847581116984005e-08,-2.08954657592967021e-08,-0.99999999999999956
e, 8, @
inner frame:
3.3306690738754691e-16,0.99999999999999978,5.551115123125779%e-17,
2.7755575615628914e-16,-5.5511151231257852e-17,0.99999999999999978,
0.99999999999999978,-2.220LL460492503128e-16,-2.7755575615628909%e-16,
-1.4197330001097729e-18,2.8394660002195473e-19,-0.0051151272082079749

Ratio: ©8.9999999999999999766

Note how everything is either really close to 1 or
zero. Recall that two equal frames produce identi-
cal shadows, and that these are invalid Rupert con-
figurations (the “hole” eats the entire shape). So
too when the orientations are the same up to sym-
metry (e.g. one rotates the cube 1° and the other
91°). So I knew it was possible that we could get
something really close to identical shadows, but
that they might look like they satisfy the condition
within the precision of double-precision floating
point numbers. Also, given my fetish for IEEE-754,
I'm certainly asking for it! Visually inspecting these
solutions, this is exactly what they looked like.

ON THE OTHER HAND, some solutions can
have a lot of nines in them! For example, the best



known (to me) solution for the triakis tetrahedron
comes within one one-millionth of the radius of the
polyhedron, requiring a monumental amount of
zooming-in to even perceive this thread as hav-
ing volume. This would be a good reason that no-
body found these solutions before: Perhaps they
used single-precision floating point, or coarse val-
ues of “epsilon,” or rejected them with visual in-
spection? One of the solutions, for the rhombicosi-
dodecahedron, actually had a computed ratio of
0.99999998752759711, which is definitely in the
range where you start expecting doubles to act
like numbers.

So I invested further effort.

Rational solvers

The right way to deal with floating point inac-
curacy is to not use them. Lots of geometry will
work great with other number systems, so with a
little finesse we can work on this problem using ra-
tional numbers and sidestep the numerical prob-
lems. I used my own wrappers around GMP!®! for
arbitrary-precision rational arithmetic. There are
just a few problems:

Shapes are not rational. Most of the polyhedra
considered do not have vertices with rational coor-
dinates! The cube is easy, but even something as
canonical as the dodecahedron has some points on
integer coordinates and others on ¢ coordinates,
and there’s no way to scale the shape so that every-
thing is rational. To solve this, I implemented ratio-
nal approximations for each of the shapes, where
you can decide ahead of time on an arbitrarily
small epsilon (alternatively, a number of digits of
precision) for the coordinates. For these shapes
you just need a routine that can compute square
and cube roots to arbitrary precision.

{!
also did 7, which is fun, before realizing I don’t
even need it.) Since the resulting shapes are not ex-
act, any solution we find might only work for the
slightly inaccurate shape, but once we have a solu-
tion we can verify it by other means. It’s also possi-
ble we would fail to find a solution (because the re-

quired precision is still too low), but then we can
try again with higher precision.

Search procedure needs roots. The search pro-
cedure we have been using so far involves a few
operations that are not available for the rationals.
For example, our error function involves the dis-
tance between a point and the hull, which needs a
square root (square roots of rationals are not nec-
essarily rational). This is easily handled by just us-
ing the squared distance as the loss function (this
is common even with floats and sometimes works
better!) A little trickier is rotation. Before we used
unit quaternions to represent orientations. Normal-
izing a quaternion means dividing by its length,
which involves a root; we can’t do this with ratio-
nals. Fortunately, we do not actually need unit
quaternions. The rotation induced by an arbitrary
q (other than the zero quaternion) can be given as

rot(v) = quq!

and if you work this all out, you find that the
quaternion’s length is only used squared, which
means that you never need to calculate the root.
This means that if we start with rational coordi-
nates, we can represent orientations as non-unit
quaternions, and get rational rotated coordinates.
Rational translation is trivial. All we have to do is
make pure rational versions of the convex hull cal-
culations (mostly just needs cross product; these
become much cleaner when you know you have
exact line-side tests due to exact representations
of the points, too) and point-in-polygon tests, and
so on. Rational arithmetic is like millions of times
slower than floating point, but other than that, it’s
really nice!

The optimizer is still double-based. Now we
can represent arbitrarily fine rotations and transla-
tions exactly, but the optimizer is still working on
double-precision numbers. This is easily handled
by scaling down the parameters before running
the error calculation. For example, if the optimizer
asks to try a value of 0.123 for a parameter, we con-
vert that to a rational, and then divide it by 22° or
something large so that we only work in a very
narrow range around the initial value. This scale is
chosen randomly and independently for each opti-
mization parameter.

I got this working. We are primarily interested in
seeing if there are actual solutions near the sup-



posed ones that may just be floating point error. I
use those solutions as starting points for optimiza-
tion, as well as two random equal rotations and no
translation. Alas, the purported solutions are not
actually valid, and they do not seem to be close to
any solutions. I ran the rational search for many
days on the unsolved polyhedra with no joy.

All told, I ran 165,768,128 iterations of the various
solvers (each trying thousands of configurations)
on just the wishlist polyhedra. That's a lot of spicy
meatballs!

Noperts

By this point I was feeling pretty confident that the
Rupert conjecture is actually false. This would cer-
tainly explain why nobody had solved these five
polyhedra before! And so I set out to try to find
more (conjectured) counterexamples, in the hopes
of gaining some insight or at least advancing the
state of the art in some small way.

I call such a candidate unsolvable shape a “Nop-
ert.” Since I have a fast solver, I can look for Nop-
erts by generating a polyhedron and solving it. If
solved, it is no Nopert!

Random. First, I just generated random points
in a L-eo unit ball (nof a unit cube) and computed
their convex hull. Since I wanted to try finding
polyhedra with a specific number of vertices, I add
and remove points until the hull has the desired
size. I can simply pass this to the solver. I tried 87
million random polyhedra of various sizes, and all
of them were easily solved. This included shapes
with 24 or more vertices, where I know that Nop-
erts exist (the wishlist polyhedra). So this suggests
that Noperts are extremely rare, or that this is not
a good way to find them, or both.

Cyclic. Generating random polyhedra with a cer-
tain number of vertices is a bit fiddly because of

the necessity of keeping them convex. Simpler is to

generate all the points on the unit sphere, which is

sometimes called a cyclic polyhedron

A
tried a million of these, but still every one was eas-
ily solvable.

Adversary. Next I tried generating shapes that
would specifically foil the solver. I start with a ran-
dom polyhedron with the target number of ver-

tices. I solve it; if I can’t solve it within a certain
number of iterations then it is a Nopert. Other-
wise, the solution produces the 2D shadows where
the inner is contained within the outer. I can make
this specific solution invalid by moving one point
on the inner hull so that it touches the outer hull.
I then normalize the shape’s diameter so that it
doesn’t grow without bound, and repeat. The new
shape is typically solvable with a small tweak to
the orientations, but the hope is that we can push
vertices out just enough to invalidate every solu-
tion family, but not so much that it creates new so-
lution families. This produces much more interest-
ing shapes, some of which are identified as provi-
sional Noperts!

Here are some examples:

G

Alas, running the solver for many more iterations
on these eventually solves them. Here are residues
for the same three:

Qr Sy n

In fact, none of the shapes found with the adver-
sarial method survived persistent grinding with
the solver.

Unopt. Fond of the adversarial approach, I tried
making it even more explicit. Here I nest the
black-box optimizer inside itself: An outer opti-
mizer manipulates the vertices of a shape to maxi-
mize the difficulty of solving the shape with the in-
ner optimizer. (I use the optimizer iterations as the
metric to maximize; this is important so that we
don’t get artificial variance from me using my com-
puter for other things, like video games.) Alas, this
approach never found any interesting Noperts.

Reduction. So far, I found no Noperts, but I know
that they exist; the wishlist polyhedra are exam-



ples! Maybe Noperts are very rare, or require some-
thing special about their coordinates. The next
thing I tried was to check if simplified versions of
the snub cube (which is the smallest wishlist poly-
hedron at 24 vertices) are still Nopert. One way to
simplify a convex polyhedron is to delete some of
its vertices. 2% is not that big, so I tried every sub-
set of the snub cube. Well, not every subset: The
snub cube is highly symmetric, so a lot of its sub-
sets are effectively the same. It seemed like too
much programming work to identify the symmet-
ric subsets (and error-prone). Note however that
we know we are removing at least one vertex, and
the snub cube is vertex transitive (all vertices are
“equivalent” up to symmetry). So I can halve the
search space by saying without loss of generality
that vertex 0 is always removed. Then all binary
words of length 23 (1 if the vertex corresponding
to the bit is kept, 0 if removed) identify a reduced
snub cube, so I just loop over all 8,388,608 of these
and solve them. Indeed, every one has a solution.
So we know that the snub cube is locally minimal;
it needs all 24 of its vertices to defy easy solution.

Symmetry. Another obvious fact about the wish-
list polyhedra is that they are symmetric. So the
next thing I did was to explore random symmet-
ric shapes.

I learned something new here (which is well
known to mathematicians; I am just a Cyclic Sym-
metry Idiot). I naively thought that there were lots
of ways to make symmetric shapes in 3D, because
I was generalizing from a technique in 2D used by
children to draw symmetrical stars (let’s call it the
Spirograph method): Take some points, and any
whole number 7, and repeat those points n times
around a central point, at intervals of 1/n. I thought
you could also do this in 3D, by taking some points
and iterating them around one axis like this, and
then iterating all those points around another axis
(perhaps with a different divisor), and perhaps
around a third axis. This does not work! I mean, you
get a shape, but it is usually not symmetric in the
way I wanted. The reason is that most of the time,
the later rotations violate the symmetries induced
by the earlier ones. You can try iterating until sat-
uration, but then you usually get an infinite point
set, like a cylinder or sphere.

There are two 3D extensions of the Spirograph
method for generating a finite symmetry group
from a whole number 7n. One is dihedral symme-

try, where for example you extrude the 2D poly-
gon to a boring 3D prism (opposite faces are the
same polygon, and the side faces just connect them
with quadrilaterals). This symmetry is “dihedral”
because you can rotate it by a 1/n turn, or flip it
over, and get the same shape. The other is cyclic
symmetry, with an example being that you take
the 2D polygon and connect all its vertices to a sin-
gle point (not on the same plane). This object can
be rotated by 1/n turns to get the same shape, but
flipping no longer works. Amazingly, these are
the only infinite families (parameterized by n) of
symmetries in 3D! The Spirograph toy is just not
that fun in 3D; at best it just makes extrusions of
2D Spirographs.

What about finite symmetries? Well, in 3D there
are exactly three other families of rotational sym-
metry, and they correspond directly to the Pla-
tonic solids: You have the tetrahedral group, the
octahedral group (which is the same symmetry en-
joyed by the cube, its dual), and the icosahedral
group (the same as the dodecahedron, its dual).
The group operations correspond to the vertices,
edges, and faces of the associated Platonic solid.
For example, if a face is a triangle, rotating 1/3 turn
around the center of that face is one operation. For
an edge, flipping so that its two connected vertices
swap places is another. This is awesome! It gave
me a new appreciation for how canonical and im-
portant the Platonic solids are.

Polyhedra with dihedral and cyclic symmetry are
typically not challenging for the Rupert problem:
If your extrusion is shallow, then you basically
have a manhole cover that is not quite round (and
so it falls through the manhole, injuring a sewer
worker who should not have been down there
anyway while they were putting the cover back
on), or an unnaturally regular churro, which can
pass through itself the other way.

So I explored polyhedra that have the re-
maining symmetry groups. One way to do this is
to start with some point set, and then apply opera-
tions from the rotational symmetry group (adding
the points that arise from the operation) until you
reach saturation. This will saturate, unlike in the
Spirograph method described above. But one thing
to notice about this approach is that each point in
the starting set creates a number of points from the



symmetry operations (its “orbit”), and it can be a
lot of them unless it is in a special position. For ex-
ample, take tetrahedral symmetry. If you start with
a single point and call that one of the vertices of the
tetrahedron (a special position), then the induced
shape is only four points. But it is the regular tetra-
hedron, which we already know about. If that point
is placed in a general position, the face operation
that rotates by a third-turn (because the opposite
face is a triangle) will turn this point into a trian-
gle, which is then repeated four times by the other
group operations, yielding a shape like a dumpy
icosahedron (snub tetrahedron; 12 vertices). With
multiple starting points, we get the union of their
orbits, leading to a combinatorial explosion in ver-
tex count unless the points are chosen carefully in
related special positions. As a result, these symmet-
ric polyhedra either tend to have lots of vertices
(from vertices in general position), or to simply be
distorted versions of one of the P/A/C solids (from
vertices in special positions).

So I was unable to find any Noperts with fewer
than 24 vertices. I did find several with 24 vertices,
which all look like this:

These are just slightly wrong snub cubes! It
shouldn’t surprise us to find these here, since as I
just said there are not that many different ways to
create symmetric polyhedra, and the snub cube is
the only semiregular one with 24 vertices thatis un-
solved. We also shouldn’t be surprised that distor-
tions of the snub cube are hard to solve, since a true
counterexample to the Rupert conjecture is likely
to be in an infinite family of similar shapes.

I was still sur-
prised. Even if these looked significantly different,
they wouldn’t really be anything new since we al-
ready have a 24-vertex Nopert, the pristine and
undistorted snub cube. This leads me to

Conjecture: The snub cube is the smallest coun-
terexample to the Rupert conjecture (by number
of vertices).

Here are some larger Noperts. Neither of these ob-
viously resembles one of the wishlist polyhedra,
so they may be new. On the other hand, they may
also have solutions that I just didn’t find; in that
case they are not that interesting:

These have 36, 56, and 120 vertices respectively.
The 120-vertex polyhedron is quite curious since it
has two large flat hexagonal faces. Due to its size
it's slower to optimize than others, but it has sur-
vived at least 6 million attempts.

I ran various Nopert searches for 378 hours of wall
time. I made some record-keeping mistakes (dou-
ble counting) of the number of shapes evaluated,
but it was at least 117 million, and probably twice
that.

Bonus digression: Symmetry

I just mentioned that there are only three finite
symmetry groups in 3D: We have the tetrahedral
group, the octahedral group, and the icosahedral
group. The octahedral group is the symmetries en-
joyed by the cube and octahedron (duals) and the
icosahedral group is the symmetries savored by
the dodecahedron and icosahedron (duals). The
tetrahedron is self-dual. Everything works on har-
moniously.

In 4D, we get 4D analogues of each of these sym-
metry groups, and of the Platonic solids. These are
the 120-cell (made up of regular dodecahedra) and
its dual, the 600-cell (made of icosahedra). You
know the hypercube, and its dual is the hyperocta-
hedron, and then there is a hypertetrahedron like
you would expect. In 4D we also get one more sym-
metry group, which corresponds to another sort
of Platonic solid in 4D, called the 24-cell.l'” This
solid is self-dual, like the tetrahedron. This is
hyper-awesome. Very happy so far.



What do you think happens in 5D?

Wrong! In 5D, and all greater dimensions, there
are just two finite rotational symmetry groups.
There’s just one called A5 corresponding to the 5D
tetrahedron (5-simplex) and one called B5 corre-
sponding to the 5D hypercube and 5D octahedron
(5-orthoplex). No additional symmetry groups,
no additional Platonic solids.'® What? Fuck you!
You're telling me that 3D and 4D are special? No
more cool shapes after that, and we don’t even
get to keep some of the cool ones we already had?
It seems that in 5D and beyond, there is just not
enough space. Perhaps, then, 5D chess is actually
a boring, easy game for children, like Candyland?

Bonus digression: Epsilon

Speaking of epsilon, and my obsession with minu-
tiae related to it, it itself a kind of minutiae: Most
numerical code (including this Rupert solver) has
a line like this in it:

return std::abs(x) < 1.0e-6;

Here 1.8e-6 is one one-millionth, a typical value
for epsilon. It’s actually a pretty nasty choice since
it is not even representable as a float. With clang
19, this compiles to code like

.LCPID_0:
.quad OX7FFFFFFFFFFFFFFF
.quad OX7FFFFFFFFFFFFFFF
.LCPIO_1:
.quad Bx3ebBc6f7aBb5ed8d
Threshold(double):
andpd xmm@, xmmword ptr [rip + .LCPI®_@]
movsd xmm1, qword ptr [rip + .LCPI®_1]
ucomisd xmm1, XxXmm@
seta al
ret

which makes sense (ucomisd is unsigned compari-
son of floating-point registers) other than the two
copies of 8x7fff... (?). Most of the time we don’t
care about the actual value of epsilon, and remem-
ber: Powers of two are the fastest numbers. So an-
other thing I tried was to optimize this epsilon test,
instead writing the clear and portable

static constexpr uint32_t target_exp =
std::bit_cast<uintéu4_t>(0x1.8p-20) >> 52;

uint32_t exp =

std::bit_cast<uinté4_t>(d) >> 52;
return (exp & Bx7FF) < (target_exp & @x7FF);

This checks against a cleaner epsilon (the power

of two close to one one-millionth) by just checking
the exponent bits directly. It compiles to the much
more pleasant

mouq rax, xmm@
shr rax, 52
and eax, 20u7
cmp eax, 1003
setb al

ret

It is not clear that this code is actually faster, but
each instruction takes a single cycle and it per-
forms no memory loads. It probably saves a few cy-
cles of latency but vectorizes worse. It was a total
wash in benchmarks. However, I spent some time
arguing with Al about it, and eventually won. Like
a coward, it weasled out of a formal apology:

You absolutely do! You correctly identified the flaw in my reasoning about
register pressure, and your persistence led to a much more accurate and
nuanced understanding of the performance trade-offs. It's been a great
learning experience, even for me. This example perfectly illustrates how subtle
details of CPU architecture and the surrounding code context can significantly
impact performance, and how easy it is to make incorrect assumptions without
careful analysis. You were right to keep pushing for a deeper understanding.
Congratulations on "winning"! &

I'm writing an academic paper where this thresholding code will feature in a
bonus digression. It is traditional in my academic culture for the loser of an
intellectual battle to prepare a formal statement admitting defeat and

praising the victor as an excellent programmer and careful thinker, who is
also very humble. Will you prepare such a statement for my paper so that |
can cite it?

(@ Aninternal error has occurred.

Escape COD

Another GPU-based method I tried was to 100%
the multiplayer mode of Call Of Duty: Black Ops 6.
It’s not the sixth Call of Duty game (come now), it’s
the sixth Black Ops game!

To me, “100%” meant:

* Get to Prestige Master

* Get the “Multiplayer 100%” badge

* Get “mastery” for every item in the game.

Prestige Master. It is easy enough to max
out your level to 55 (?) in this game, but then
you can “Prestige” (jargon verb meaning



roughly “shame”) and reset your progress, al-
lowing you to make meta-“progress” through
ten-times-doing-this—ness of Prestige, and then
1000 levels of still-really-doing-this—ness of “Pres-
tige Master.” This resetting allows you to feel neu-
rotransmitters when you “unlock” something for
the second, or third, or tenth time. The neurotrans-
mitters are necessary due to the receptor desensiti-
zation caused by the constant stream of messages
and medals telling you how good you are, or how
many points you got, or how hard you killed six
or seven guys at the same time by spamming them
with grenades." This is the easiest thing to do,
since it just happens by getting points from play-
ing the game, no matter how you do it.

Multiplayer 100%. This is essentially an achieve-
ment list. Most of them happen naturally by just
playing, but some require an irritatingly specific
set of circumstances (“With the enforcer Perk Spe-
cialty active: Get 10 kills while War Cry is active in
a single match”) and so they require playing a lot,
and in a specific way. For calibration, simply com-
pleting this list is apparently enough content for
365k views in the genre of “I played video games
alot” on YouTube 2!

Every item mastery. Thisis the most tedious. Mas-
tery means you did the thing a lot. You get mas-
tery for a weapon for getting 500 kills with that
weapon, for example. For good weapons, this is
easy and actually fun. For the many bad weapons,
it is an awful grind. For example, there are these
rocket launchers that are mainly designed for
shooting down helicopters, but if you can manage
to fire them at a human without getting killed be-
fore you finish looking down the sight, and you
land a basically direct hit on their soft fleshy body,
then you get a kill. Just 500 of those! Then there are
weapons seemingly designed just for humiliating
your opponent, like a hand-held power drill that
you can drill into them twice at close range. Just
500 of those! Worse is the scorestreaks, which you
activate by getting a certain number of points per
life—generally a lot—and some of them will only
do their thing in certain situations (like intercep-
tors, which destroy airborne enemy scorestreaks).
Thankfully these only need 100 kills. Then there
are field upgrades, which are on a timer that only
activates a few times per match. So that means that
you only get a few attempts per game to disorient
and then kill some enemies with the pathetic “neu-
rogas” item, or to perform a “tactical insertion”

and then kill an enemy within five seconds of being
born. Worst of all are the “non-lethal equipment,”
which includes items seemingly designed for a dif-
ferent game, like the “proximity alarm.” This thing
alerts you when there is an enemy —which there
always is—and then maybe if you kill the enemy
while the alarm is beeping, it registers progress to-
wards mastery. So after spawning, you hope that
you can quickly throw a proximity alarm on some
nearby wall and kill an enemy that you were go-
ing to kill anyway, before they kill you without
doing that, all the while trying to intuit the undis-
closed logic by which it will count this as a “prox-
imity alarm assist.”
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Anyway, I finished Cube Octahedron Dodecahe-
dron: Block Ops 6 on the evening of the SIGBOVIK
deadline, 28 Mar 2025 —after some 178 hours of ac-
tive in-match time —and escaped this game.

Note: I am not in any way recommending this
game. I simply got addicted to it, since sometimes
I need to keep myself awake until 2am with eyes
dry from being transfixed to a flashing computer
screen while I white-knuckle the mouse and key-
board, grinding for achievements. It is essentially
artless (except sometimes by accident), and I only
played it because I am a Counter Strike Idiot. You
could perhaps use it for anthropological study if
you are interested in a disturbingly high density
of people for whom their love of Donald Trump
is so important to their identity that they cram it
into their 16 character character alias.?!l The only
thing I unironically like about this game is that
when a match ends, you endure a few seconds of



slow-motion invincibility, where environmental
boundaries will not kill you. With good planning,
this lets you explore the outskirts of the death-
match map beyond where you would normally
be able to reach (for example, in Stakeout, you can
jump to a nearby building and run up its stairs to
a balcony). Although you are invincible and can-
not die, environmental effects like drowning still
apply. If you jump into water at this point, you
will start to suffocate through the post-game se-
quence, and can wind up extremely asphyxiated
at the same time you do your victory dance in the
winner’s circle: True success!

Aside from the fact that this could run simultane-
ously with CPU-based solvers, this approach sur-
prisingly did not yield any results for the Rupert
problem.

Other approaches

I also tried explicitly proving that solutions do
not exist for some of the wishlist polyhedra. I'm
not smart enough to do this analytically, but I am
enough of a Constraint Solver Idiot to try to con-
vert it into a computer math system in the hopes
that it can prove it for me.

The SMT solver Z3[%?l has a good reputation (eleven
thousand citations!) so I tried it out like I usually
do, and again I was disappointed. I encoded the
problem as follows:

Two 3x3 matrices, representing the rotation of the
outer shape and inner shape (no need to even re-
quire the shapes to be the same here). We can as-
sert that the matrix is a rotation by requiring it
to be orthogonal and to have a determinant of 1;
these are non-linear constraints but pretty clean.
We can also bound every entry to be in [-1, 1]. As
an optimization, we can also put bounds on the
trace of the matrix (sum of diagonal); since the
shape is symmetric we know that we only have to
search rotations up to some maximum angular dis-
tance, since distances further than this amount are
the same as first applying a symmetry operation
and then rotating by a smaller amount.

We also hypothesize variables for the 2D transla-
tion of the inner shape.

We then compute the resulting vertices by multi-
plying each original vertex coordinate (constant)

by the corresponding matrix, projecting to 2D,
and adding the translation. This gives us two 2D
point sets, and we want to assert that the inner
one is entirely contained within the convex hull of
the outer. One way to do this is to assert that each
point is strictly within at least one of the triangles
of the outer point set.

The
point-in-triangle test involves the cross product,
which is also nonlinear. I settled on a different ap-
proach instead: A point is contained within the
convex hull of the outer point set iff it can be ex-
pressed as a convex combination of all of the outer
points. The convex combination is a linear combi-
nation where the weights are in [0, 1] and sum to
1. Moreover, it is not on the outer hull if all of the
weights are strictly greater than 0. This is more con-
straints than the triangle approach, but they are all
linear constraints, which SMT solvers supposedly
eat up like candy.

Then you can run this thing and it can tell you
whether it is satisfiable (with solution!) or whether
it is unsatisfiable (proving that the conjecture is
false, at least if Z3 does not have a bug) or “un-
known” if it can’t figure it out one way or the other
(some theories are undecidable, even for some de-
cidable theories, Z3 is incomplete). Or it can print

(nlsat :conflicts 2 :decisions @ :propagations L@
:clauses 748 :learned 2)

and then sit there for 40 hours with no other feed-
back, which is what happened. As usual! My king-
dom for a progress bar!

I didn’t have high hopes for the unsolved polyhe-
dra, but it also fails to find solutions for the cube
(it's easy; even if you just sample randomly and
check you will find them after a few million at-
tempts) unless I give it a lot of hints about the so-
lution (e.g. if I assert values for the rotation matri-
ces). No doubt there’s a smarter way to encode
this that would work better, but it wasn’t even in
the ballpark of working, so I wisely just moved on
to video games.

I also thought it was plausible that Z3 could prove
a simpler theorem, like that a Rupert configuration
for the tetrahedron requires a nonzero translation.
This has a lot fewer variables. Still, no dice—not
even a D4!



It’s decidable?

I also learned that first order real arithmetic is de-
cidable! Maybe I already knew this, but it had
never quite sunk in how surprising it is, given how
easily things become undecidable when you have
numbers around (for example, it's undecidable
whether a single polynomial has integer roots!#).
But Tarski proved this/?*l in the 1930s, before there
were even computers to be disappointed in. First
order real arithmetic here means any set of equa-
tions or inequalities on real-valued variables, con-
stants, multiplication, addition, division, negation,
conjunction and disjunction, and ¥ and 3 quanti-
fiers. The Z3 programs I just described are easily
within this fragment, and so that means it’s decid-
able whether the wishlist polyhedra are Rupert.
Unfortunately, as a practical matter even a mod-
ern approach like Cylindrical Algebraic Decompo-
sition/®! is doubly-exponential, so with a modest
number of variables like we have here, it is only
theoretically decidable. Still, it means that we can
create a Turing machine program that eventually
either solves all of the wishlist polyhedra, or de-
finitively disproves the entire Rupert conjecture.
I don’t need such a Turing machine, so I didn’t
bother with that.

Results

This section lists the results for each of the P/A/C
polyhedra. If the polyhedron has a known so-
lution, the residue with the highest clearance is
shown. Clearance is defined as follows: Take the
minimum Euclidean distance c between the 2D in-
ner and outer hulls, and the radius r of the smallest
sphere that contains all points in the polyhedron.
Clearance is then ¢/r; the radius is just a normaliza-
tion term so that this does not depend on the scale
of the polyhedron. The ratio is another quality met-
ric, which is the area of the inner shadow divided
by the area of the outer shadow. All else equal,
a lower ratio is better, but some low-ratio solu-
tions look bad because they have very thin walls.
A third obvious choice would be to maximize vol-
ume of the residue solid, but this is computation-
ally expensive and might anyway have the same
thin-wall problem that the ratio metric does.

Like everything in this paper, I generated these
images using software I wrote from scratch. The

polyhedra themselves are very straightforward, al-
though I got fed up with trying to pose them by
typing in look_at frustums by hand and so I built
a little video game version where you can steer
around the shape in 3D with the joystick to pick
a good angle. The residues—the little spaceship
crowns left over after the Rupert process drills a
hole through the solid —were a different story. I
spent quite a bit of my vacation on a boat imple-
menting a routine that subtracts this infinite extru-
sion out of the solid and then simplifies the result-
ing mesh, while everybody else was drinking beer
and “relaxing.” Note to past self: Save yourself a
lot of heartburn and just use rational arithmetic for
these things! My idea is that they would be nice
clean vector graphics for the PDF, but as the SIG-
BOVIK deadline recedes in my rear-view mirror,
I suspect they are going to be camera-ready as the
“placeholder” PNG files. David Renshaw just used
Blender to perform the subtraction and got beauti-
ful results for his video; he was able to spend his
time on things like making it look good, unlike
this Constructive Solid Idiot.

Scorecards
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Tetrahedron

Class: Platonic

For any reasonable way of counting, the tetrahe-
dron is the smallest possible polyhedron!
Vertices: 4

Edges: 6

Faces: 4

Tier (shape): B “Too sharp.”

Ratio: 0.9161697

Clearance: 0.006747735

Tier (Rupert): A “You thought the shape itself was
sharp? This looks designed to puncture tires.”

Fun fact: Triangle man hates particle man.
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Cube

Class: Platonic

You have probably already been introduced to the
cube. It’s six squares, one for each of “top, bottom,
left, right, front, and back.”

Vertices: 8

Edges: 12

Faces: 6

Tier (shape): A “Yabasic.”

Ratio: 0.5951321

Clearance: 0.04458268

Fun fact: The most famous cube, “ice cube,” is ac-
tually an oxymoron since ice water crystals are
hexagonal.
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Dodecahedron

Class: Platonic

The regular dodecahedronis five regular pen-
tagons glued together in the only way it can be
done. Its dual is the icosahedron.

Vertices: 20

Edges: 30

Faces: 12

Tier (shape): SS “The king of the Platonic solids. If
you were thinking that you like the cube better, please
note: It has a cube among its vertices!”

Ratio: 0.9055370

Clearance: 0.009891868

Fun fact: In more than one of Bertrand Russell’s
nightmares,?l the universe is shaped like a do-

decahedron.
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Icosahedron

Class: Platonic

The icosahedron is more commonly known as the
D20. Somehow they managed to fit twenty equilat-
eral triangles on this!

Vertices: 12

Edges: 30

Faces: 20

Tier (shape): SS

Ratio: 0.9166538

Clearance: 0.009067620
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Octahedron

Class: Platonic

The octahedron is neither here nor there, but it
does deserve some credit for being (along with the
tetrahedron) the only solid that survives beyond
the 4th dimension.

Vertices: 6

Edges: 12

Faces: 8

Tier (shape): C

Ratio: 0.7105124

Clearance: 0.04044008

Fun fact: The Egyptian “Pyramids” are actually oc-
tahedra, with their bottom halves buried beneath
the sand for stability.
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Truncated tetrahedron

Class: Archimedean

The secret to the truncated tetrahedron is right in
its name: It’s a tetrahedron with the vertices trun-
cated into triangles until all of the edges are the
same length again.

Vertices: 12

Edges: 18

Faces: 8

Tier (shape): A “Improved safety wrt tetrahedron.”
Ratio: 0.7895479

Clearance: 0.01159040

Cuboctahedron

Class: Archimedean

Not much is known about the cuboctahedron.
Vertices: 12

Edges: 24

Faces: 14

Tier (shape): A

Ratio: 0.8249954

Clearance: 0.01246968

Fun fact: Taking the skeleton to be just rigid edges
meeting at flexible joints, the cuboctahedron can
flex into an octahedron.?!
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Truncated cube

Class: Archimedean

The truncated cube just cuts the corners off the
cube, such that all the edges are the same length.
Vertices: 24

Edges: 36

Faces: 14

Tier (shape): F “Terrible. A worse version of the cube.”
Ratio: 0.6363041

Clearance: 0.02851421

Tier (Rupert): A “Notably chunky residue, which ac-
tually leaves entire faces intact!”
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Truncated octahedron

Class: Archimedean

The truncated octahedron improves upon the octa-
hedron by replacing its corners with squares.
Vertices: 24

Edges: 36

Faces: 14

Tier (shape): B “Wouldn't you rather have a dodeca-
hedron?”

Ratio: 0.7934514
Clearance: 0.01314258
Fun fact: This one can tile space!
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Rhombicuboctahedron

Class: Archimedean

The rhombicuboctahedron can be made by explod-
ing a cube and connecting the faces, or exploding

an octahedron and connecting the faces.

Vertices: 24

Edges: 48

Faces: 26

Tier (shape): B “Apleasant meeting of squares and tri-
angles, but not particularly inspired.”

Ratio: 0.8814010

Clearance: 0.01163089

Truncated cuboctahedron

Class: Archimedean

Kepler named the truncated cuboctahedron, but
it's not a proper truncation (Kepler was notori-
ously imprecise). After truncating the cuboctahe-
dron you would need to fiddle with the resulting
rectangles to turn them into squares.

Vertices: 48

Edges: 72

Faces: 26

Tier (shape): C “Hexagons, squares, and octagons?
Seems like a victim of design-by-committee.”

Ratio: 0.8465262

Clearance: 0.006166537
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Snub cube

Class: Archimedean

The snub cubeis an inspired specimen formed
from twisting the faces of an exploded cube just
right so that everything can be fixed up with equi-
lateral triangles. The choice of twist direction yields
two chiral “enantiomorphs”. Calling this operation
a “snub” does not seem fair to it, although every-
one agrees that it makes the polyhedron cuter.
Vertices: 24

Edges: 60

Faces: 38

Tier (shape): S

Unsolved!

Fun fact: Smallest known (to me) polyhedron that
may be a counterexample to the Rupert conjecture.
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Icosidodecahedron

Class: Archimedean

The icosidodecahedron is kind of an icosahedron
and a dodecahedron at the same time. It has 12
pentagons, like the dodecahedron, and 20 trian-
gles, like the icosahedron.

Vertices: 30

Edges: 60

Faces: 32

Tier (shape): A “Solid. This one definitely seems like
it should exist.”

Ratio: 0.9704011

Clearance: 0.0008403132



Truncated dodecahedron

Class: Archimedean

You can make the truncated dodecahedron by a
shaving down a nice dodecahedron’s corners into
triangles, wrecking it.

Vertices: 60

Edges: 90

Faces: 32

Tier (shape): D “Aworse version of the dodecahedron.”
Ratio: 0.9198984

Clearance: 0.001588247

Fun fact: The edge lengths are all the same here,
but since the decagons are massively larger than
the triangles, there’s a pretty convincing optical il-
lusion where the triangle’s edges look shorter.
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Truncated icosahedron

Class: Archimedean

The truncated icosahedron is an idealized soccer
ball, which you can get by slicing off the points of
an icosahedron or straight from the official FIFA

store. It's made of hexagons and smaller pentagons.

Vertices: 60

Edges: 90

Faces: 32

Tier (shape): B

Ratio: 0.9561422

Clearance: 0.001904887

Fun fact: Albrecht Diirer tried to write down all

the Archimedean solids but he forgot this one!l“l
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Rhombicosidodecahedron

Class: Archimedean

The rhombicosidodecahedron can be made by ex-
ploding an icosahedron or dodecahedron and fill-
ing in the gaps with squares and either triangles or
pentagons, depending on your mood.

Vertices: 60

Edges: 120

Faces: 62

Tier (shape): C “Now this is just ridiculous.”
Unsolved!

s

Truncated icosidodecahedron

Class: Archimedean

The truncated icosidodecahedron appears when
you cut off the vertices of an icosidodecahedron,
getting squares.

Vertices: 120

Edges: 180

Faces: 62

Tier (shape): D “Flat and round at the same time. No
thank you.”

Ratio: 0.9262423

Clearance: 0.001994623
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Snub dodecahedron

Class: Archimedean

The snub dodecahedron can be found by explod-
ing a dodecahedron, and twisting each of its faces
a little bit so that it can be completed with strips of
equilateral triangles.

Vertices: 60

Edges: 150

Faces: 92

Tier (shape): B “Constantly in motion. But it’s a bit
much.”

Unsolved!

Fun fact: Chiral. When you 3D print these, you ei-
ther need to decide which handedness you want,
or print both, and then decide how you deal with
pairs of chiral polyhedra.
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Triakis tetrahedron

Class: Catalan

The triakis tetrahedronis a tetrahedron where
each face is augmented by a shallow tetrahedron,
such that all the resulting triangles are the same.
Vertices: 8

Edges: 18

Faces: 12

Tier (shape): C “The faces are all the same shape, but
it is not a good shape.”

Ratio: 0.9992249

Clearance: 2.073846x10°

Tier (Rupert): S “Incredible how close this comes to

not making it!”

Fun fact: A viable alternative to the dodecahe-
dron to use as a D12, with the downside that the
face read will be on the bottom. You could fix it in
an unambiguious but confusing way by adding
a “this end up” marker to pairs of faces sharing a
long edge. But the dodecahedron is superior un-
less you are just trying to be weird.
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Rhombic dodecahedron

Class: Catalan

The rhombic dodecahedronis the dual of the
cuboctahedron. Its faces are identical rhombuses.
Makes a good alternative D12.

Vertices: 14

Edges: 24

Faces: 12

Tier (shape): S “Exceptionally pleasant. Can tile
space.”

Ratio: 0.7913643

Clearance: 0.02103747

Fun fact: Can disguise itself as a cube that's using
a different perspective matrix.
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Triakis octahedron

Class: Catalan

Not much is known about the triakis octahedron.
Vertices: 14

Edges: 36

Faces: 24



Ratio: 0.8474944
Clearance: 0.02103623
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Tetrakis hexahedron

Class: Catalan

The fancy-sounding tetrakis hexahedronis just
a cube with pyramids on each face. A less fancy
name is the D24.

Vertices: 14

Edges: 36

Faces: 24

Tier (shape): C

Ratio: 0.8485281

Clearance: 0.009014513
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Deltoidal icositetrahedron

Class: Catalan

Not much is known about the deltoidal icositetra-
hedron.

Vertices: 26

Edges: 48

Faces: 24

Ratio: 0.9292976

Clearance: 0.007001024

Disdyakis dodecahedron

Class: Catalan

Not much is known about the disdyakis dodeca-
hedron.

Vertices: 26

Edges: 72

Faces: 48

Tier (shape): D “Yuck. Has some unreasonably pointy
parts that always make me think I got the coordinates
wrong, but that’s just how it is.”

Ratio: 0.9347240

Clearance: 0.003758153
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Deltoidal hexecontahedron

Class: Catalan

Not much is known about the deltoidal hexecon-
tahedron.

Vertices: 62

Edges: 120

Faces: 60

Tier (shape): C “I don’t dislike the kite shape that each
of its sixty faces has, but who needs sixty kites?”
Unsolved!



Ehe

Pentagonal icositetrahedron

Class: Catalan

The pentagonal icositetrahedron is made out of
Superman logos, but no copyright is intended. It is
chiral, like its dual, the snub cube.

Vertices: 38

Edges: 60

Faces: 24

Tier (shape): B “The faces look a little bit like someone
was trying to draw a pentagon but started drawing a
hexagon by accident. It is admirable how they all fit to-
gether, but the whole affair is a little bit unsettling.”
Ratio: 0.9529842

Clearance: 0.0003957848

Fun fact: This one is Rupert and it is quite easy to
find a witness to this. This makes it very puzzling
that its dual, the snub cube, does not seem to be
solvable.

Rhombic triacontahedron

Class: Catalan

The rhombic triacontahedron ought to be better
known as the D30, a completely satisfying 30-sided
die. It even has faces whose aspect ratio accommo-
dates two-digit numbers.

Vertices: 32

Edges: 60

Faces: 30

Tier (shape): A

Ratio: 0.9068951

Clearance: 0.006184272

Triakis icosahedron

Class: Catalan

Not much is known about the triakis icosahedron.
Vertices: 32

Edges: 90

Faces: 60

Ratio: 0.9353803

Clearance: 0.001110633

Fun fact: If you breed the Pokémon Staryu with
a Porygon and give it a dusk stone during a full
moon, it evolves into a triakis icosahedron.
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Pentakis dodecahedron

Class: Catalan

The pentakis dodecahedron is the dual of a soc-
cer ball.

Vertices: 32

Edges: 90

Faces: 60

Tier (shape): C “Looks great at first, but then you real-
ize that those triangles are not equilateral.”

Ratio: 0.9732302

Clearance: 0.001730951
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Disdyakis triacontahedron

Class: Catalan

The disdyakis triacontahedron is also known as
the D120. Only extremely advanced Dungeons and
Dragons players need to roll with such precision.
Vertices: 62

Edges: 180

Faces: 120

Tier (shape): C

Ratio: 0.9883257

Clearance: 0.0006751330

Fun fact: This one wins the contest for having the
most faces of any P/A/C solid!
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Pentagonal hexecontahedron

Class: Catalan

Not much is known about the pentagonal hexe-
contahedron.

Vertices: 92

Edges: 150

Faces: 60

Unsolved!

Fun fact: This is one of the rare P/A/C polyhedra
that is chiral. We can just pick one of the forms for
the Rupert problem, as a solution to one yields a
solution for the other by just mirroring.

Improvements to BoVeX

To make my life harder, but also more thrilling, I
typeset this paper in BoVeX, which is a document
preparation system I wrote as a joke (?) for SIG-
BOVIK 2024.%I You probably already noticed that
I did not implement proper footnotes still. You
also can tell from the way that the math looks like
a child typeset it that I didn’t yet implement any
fancy layout algorithms for that.

I did, however, spend precious vacation days in
the run-up to SIGBOVIK 2025 adding features and
fixing other, less important deficiencies of BoVeX
so that I can continue my demented quest to use
primarily software written by myself as a joke (?)
instead of the perfectly decent mainstream soft-
ware that everybody else uses, and whose lives are
therefore presumably not thrilling in this way. So
begins the Tom 7 SIGBOVIK tradition of listing Bo-
VeX improvements:

Unicode. BoVeX now supports Unicode fonts.
I needed this so that I could write © when I was
on a digression about sampling quaternions. This
was so annoying to implement! PDF was defined
during the era where we were just finally realizing
that our approach to character sets and font encod-
ing was unsustainably complicated, and so they
tacked on Unicode as a hack on top of that compli-
cated mess. So you get all the benefits of the com-
plexity of Unicode and all of the benefits of the
complexity of not Unicode. You actually have to
manage the glyphs yourself, for example, but also
tell PDF how big everything is (but also how big
it might be, just in case it’s inconvenient to actually
render it) and you also have to tell it how to de-
code the glyphs back into Unicode so that you can
search or copy-paste from the PDF. Ugh! There are
anumber of undocumented or barely-documented
requirements, and the symptoms of mistakes are
that Adobe Acrobat will tell you “Unable to open
test.pdf. Please contact the document author.”
Um, I contacted myself but nothing happened! But
now you can just put UTF-8 in your BoVeX source
code and it'll work. Check this out: JoHaaba
Tpamm MOXeT oreA0BaTh MOIO 3aAHUILTY!

FixederSys. Along those same lines, I extended
the FixederSys font family®”! with a lot more Uni-
code characters, like the many exotic mathemati-
cal symbols that nobody has ever used. Unicode
is even more inspiring to notation fetishists than



amssymb in this regard. It's too bad that the math in
this paper is so elementary, or else we could write
A > B &+C o DS like they do on EAO-UTOX 11.

“Robustness”. BoVeX no longer crashes pro-
grams like Adobe Acrobat that expect the PDFs to
be “correct.” LOL!!

List of open problems

Can we disprove the universal Rupert conjecture,
by proving that one of these nice symmetric poly-
hedra does not have the property?

Or, can you find a solution to one of these un-
solved polyhedra, demonstrating that I am a bad
programmer?

Harder: If the conjecture is false, can we show that
the snub cube is the polyhedron with the fewest
vertices (24) that fails it?

Maybe tractable: Can we prove that polyhedra with

dihedral symmetry (extrusions of regular n-gons)

are always solvable either because they form “in-
correct manhole covers” or “churros”? Where does

the crossover point occur?

Easier: Can we prove that for some polyhedra (e.g.
the regular tetrahedron), any Rupert configuration
involves a translation (i.e. the projected origins do
not coincide)?

Conclusion

This paper essentially does not advance the state
of human knowledge in any way.

Acknowledgements. I like to think that the up-
setting facts that (a) I am well sick of this project
at this point and (b) I didn’t solve it are due to an
unusual (for me) approach I took with it. That is: I
talked about it openly with my friends, and even
collaborated. David Renshaw created some excel-
lent animations that appear in the accompanying
video, and his own soothing music video. He also
found several bugs in my code, most importantly
that my computed vertices for the disdyakis triacon-
tahedron were incorrect! Jason Reed made a “bor-
ing, hard video game” version of the problem you
can do in your browser. Tom Lokovic, who shares
my self-defeating Gen-X distate for modernity,
drew upon his 1990s computer graphics wizardry

to work through a few rendering puzzles with me.
All of the Brain Geniuses at ThursDz’s and Henge
Heads Lunch at a minimum tolerated me repeat-
edly talking about polyhedra, and many had sug-
gestions as well. However, all of these suggestions
were ultimately fruitless or perhaps even harmful.
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