
Some upsettingthingsaboutshapes  

    That we already knew  

Dr. Tom Murphy VII, Ph.D.  March 2025    
How big is the unit cube? “1?” Seems obvious,right? Let me ask you another way: Where is theunit cube? “0?”
Or: How big is the unit sphere? “1?” Imagine I amasking you these questions where I pounce uponyou with the next question just as you start to an-swer the first. To keep you off your balance, Imean. Where is the unit sphere? “0?” Which is big-ger, the unit cube or the unit sphere? Sweating yet?
“Officially” speaking, the unit cube has edge length1, and has all non-negative home coordinates, like({0, 1}, {0, 1}, {0, 1}). According to those same mathreferees, the unit sphere has radius 1, and its cen-ter at (0, 0, 0).
So the unit cube fits easily within the unit sphere.I don’t know about you, but I always imagine theidealized cube and sphere centered on the origin,with the sphere tucked inside the cube, touching itssides at their centers. (footnote: The long-running ThursDz’s
Beer Society of Math Geniuses decided that what I am actually imag-ining is not the unit cube but the “L-infinity unit sphere,” which Ithink may be true but sounds like I’m just trying to be an asshole.)
Of course we can only fit one unit cube at a time inthe unit sphere, but there’s a lot of space left over.You could ask yourself, if I have n cubes, what’sthe smallest sphere I could fit them within? Wouldit surprise you to find out that for n=6, the tightestarrangement is not a 3×2×1 grid? Or a 2×2 slab witha centered cube above and below? Or even some-thing symmetrical? For example, this arrangementfits in a sphere that’s a little smaller:

What the hell, right? I found this by computersearch (namely: after trying to solve the problemmyself, I searched on the internet using a com-puter for spoilers, and found some[5]). I love it! (Pla-tonically!) This is how it goes with me: I do enjoya beautiful math result where everything is in itsright place, but to be honest, what really titillatesme is when the problem is beautiful but the solu-tion is upsetting. I call this a “Platonic Horror.” Oneof the things I like about it is that any clear thinkerwill imagine cubes and spheres, and ask a simplewell-formed question like that. You could contrastthis with man-made horrors like “the conventionalunit cube and unit sphere are apparently usingthe word ‘unit’ differently,” or “IEEE-754 denor-mals”[6] or “U+FE18 PRESENTATION FORM FOR VERTI-CAL RIGHT WHITE LENTICULAR BRAKCET”[7]. Alienswould never think to spell the word “bracket”wrong in the formal name of a Unicode charac-ter. But they would think about putting cubes inspheres, and then find out that it’s kinda messedup, and then some of them would find it strangelytitillating that the solution is not “nice,” and theyprobably have their own version of SIGBOVIK outthere on ΞΔO-UΓΘX 11 where they have giggledabout this specific fact, and I like that idea.
Anyway, now that I’ve gotten the “Dice in Sphere”pun out of the way, we can move onto the realtopic of this paper: Dice in Dice.
   
So, um, why is so much energy wasted on tryingto wreck the world? Something about being superrich and powerful seems to attract people to ass-hattery, or assholery, or assault, or making an assout of u and me. All throughout history we havehad this problem. If I were super rich, I would



just hang out with my smart friends and do math.Right? One rare example of this seemingly work-ing out well was the Prince called Rupert, formallyPrince Rupert of the Rhine, Duke of Cumberland, KG,PC, FRS (not off to a good start, to be honest, butmaybeall the appellations are semi-meta-ironiclikeDr. Tom Murphy VII Ph.D.). I didn’t learn muchabout this prince (he’s been dead for hundreds ofyears) but once he retired from being a war sailor,he “converted some of the apartments at WindsorCastle to a luxury laboratory, complete with forges,instruments, and raw materials, from where heconducted a range of experiments.”[8] Yes! Correct!This is the same fellow who learned about PrinceRupert’s Drop and then did not protest when peo-ple attributed its invention to him (hard to blamethem for the mistake with a name like that). Thenduring what I imagine was a pleasant evening inthe pub arguing with his friends over presumablynasty 17th-century beer, he came up with the fol-lowing question: Can you pass a cube through an-other cube of the same size? The answer is, surpris-ingly: Yes! If you rotate the cube so that it lookslike a square (the small way), and rotate the otherso that it looks like a hexagon (the big way), thenyou can fit it through:

This became known as Prince Rupert’s Cube, andthe cube donut that’s left over looks like this:

Late one night I was admiring the Wikipedia ar-

ticle on the Dodecahedron, my favorite Platonicsolid. On this page I was reminded that the Do-decahedron is Rupert, like the cube. This seemedright, since if the cube has a pleasing property andthe Dodecahedron is awesome, it should also havethat pleasing property. (footnote: This is of course not true.
For example, the cube can tile space and the dodecahedron obvi-ously cannot.) 
Indeed, all the Platonic solids have the Rupertproperty. The Platonic solids are beautiful and sothe fact that all of them have this pleasing prop-erty recommends it further. Then I read the phrase“it has been conjectured that all 3-dimensional con-vex polyhedra have this property,” which mademy brain feel surprised but happy. I might haveeven gotten to sleep, had I stopped reading at thatmoment. But then I read “of the 13 Archimedeansolids, it is known that at least ten have the Rupertproperty,” and this made my brain surprised andupset. How could it be the case that we think thisis true for all convex polyhedra (infinitely many,and mostly gigantic weird ugly ones) but we don’tknow for some 3 simple beautiful ones? Did no-body check? It seemed to me it would be prettyeasy to write a search procedure that would lookfor them, and it also seemed like if we think it’spossible, it would be easy to find solutions.
Here were my Naive Heuristics:   • This is a continuous problem. If you have someway of fitting the shape through itself, then therewill be some adjacent small variation on that thatwill also work. Problems where the solution needsto be exact (e.g. problems on integers) tend to bemuch harder. These solutions won’t need to be ex-act because of NO TOUCHING! • This might be a problem that not that many peo-ple have tried (only stamp collectors), since seriousmathematicians would be interested in a real solu-tion (i.e. a proof that the general conjecture is true).• I am definitely not the best mathematician tohave tried this, but it’s possible that I’m the bestprogrammer to try it, and plausible that nobodyhas tried it with a very large and hot GPU.• If I find solutions, great; we can check those offthe list. If I don’t, I’ll learn something, because itdoesn’t seem like it should be conjectured to betrue but hard to find.• I can whip this up in a day (or maybe a week-end) and then put it aside if I can’t solve it.
So I set aside two and a half months to work on



it. (footnote: The project’s home page at tom7.org/ruperts con-
tains links to the source code repository, and will contain video con-tent in the future.)
Platonic, Archimedean, and Catalansolids  

The convex solids called Platonic all have facesmade from the same regular polygon (like a squareor equilateral triangle). There are only five: Thetetrahedron, cube, octahedron, icosahedron, anddodecahedron. (For images of these shapes youcan see the results section at the end of the paper.)I love them! (Platonically!) (And also sexually!)It’s kind of amazing that there are only five, buthere’s a good way to feel comfortable with thatidea. First, remember that regular hexagons fit to-gether perfectly to tile the plane. If you tried to putseptagons or octagons together, they would notfit; hexagons are the last ones that fit. With five orfewer sides, you can’t tile the plane, but you canfold them over and start making a polyhedron (3Dshape). This tells us that a Platonic solid must havefaces that are pentagons, squares, or triangles. Thepentagon is pretty big so there’s only one way toput them together. Same for the cube. The trianglehas three ways, but it’s not too hard to see that youare limited to these three if you try to work it out.
These solids are named after Plato, but it’s obvi-ous to me that any clear thinker would eventuallydiscover these; if there are aliens somewhere, thenthey know about the same five shapes, thoughprobably not by the same name unless they havebeen creepily spying on us, or perhaps if Plato wasnot all that he seemed!
There are two kinds of convex solids that are almostas good as the Platonic ones: The Archimedeanand Catalan solids. You might want to look at theresults section to see pictures of these, since theyare cool and you probably like cool shapes. TheArchimedean ones have faces that are regular poly-gons (but more than one type), and moreover arevertex transitive. Vertex transitivity means approxi-mately that every vertex on the polyhedron has thesame shape (the connecting edges and faces arethe same, just maybe rotated). One way to thinkabout this is that you could 3D print some connec-tors with holes in them and assemble the solid ofconnectors and straws, and you would only needone kind of connector. For a similar reason thatthere are only five Platonic solids, there are only

13 Archimedean solids.
Each Archimedean solid has a dual, which is aCatalan solid. These are perhaps cooler. Catalansolids have symmetric vertices and are face transi-tive; the faces are not regular polygons but if youcut out polygons from paper you would only needone shape to make these. There are also thirteenof these.
The Archimedean and Catalan solids are canonicaland probably also known to aliens. There are somefurther generalizations (like the Johnson solids),but each time we get weaker properties, weirdershapes, and more of them. It becomes less likelythat Aliens are out there holding their own SIG-BOVIK conference and thinking about the samething. So in this paper I’m only concerned with thePlatonic, Archimedean, and Catalan solids, whichI’ll abbreviate P/A/C.
All of the Platonic solids have the Rupert property(“are Rupert”), which we’ll define more carefullyin the next section. Upsettingly, only most of theArchimedean and Catalan solids are known to beRupert. The unknown ones I’ll call the “wishlist”polyhedra in this paper; they are:
The Archimedean solid called the rhombicosido-decahedron, and its dual, the Catalan solid calledthe deltoidal hexecontahedron; the Archimedeansnub dodecahedron and its dual, the Catalan pen-tagonal hexecontahedron; and the Archimedeansnub cube. Upsettingly: Its dual, the pentagonalicositetrahedron, does have the Rupert property!
Related work which I did not read  

I should mention: The reason that we know thatsolutions to most of these exist, and that they arewritten about on Wikipedia to keep me up late atnight, is due to the related work—a.k.a. the spoilers.Since I am highly spoiler-averse and writing forSIGBOVIK, whose prestigious standards and prac-tices transcend pedestrian norms like a relatedwork section, I did not look at the related work atall while doing this research. It might take the funout of doing it myself. It is, after all, re-search!
I can however cite a few spoilers for your conve-nience.[9][10][11]

   



The Rupert problem  

As we said, a solid is “Rupert” if you can pass anidentical copy of the solid clean through itself, leav-ing a proper hole. It’s easy to think of non-convexshapes where it’s clearly not possible, and con-vex shapes that aren’t polyhedra (like the sphere)where it’s clearly not possible. The conjecture isthat all convex polyhedra are Rupert.
This problem is pretty easy to specify precisely.The shape in question is a convex polyhedron,which is just defined by its set of vertices. For gen-eral polyhedra you also need to specify how thosevertices are connected (the edges and faces), butconvex polyhedra are easier. There’s just one wayto stretch a “skin” over the points, so we don’t evenneed to describe it (or even think about it). We’lltake two copies of the points. One is the “outer”polyhedron and one is the “inner”. The goal is tofind some way of arranging them so that the innercan pass through the outer.
The inner one will pass through the outer alongsome line, so we say without loss of generalitythat this is the z axis. We’ll use the computer graph-ics convention that the camera is located at somepositive z, looking down at the shapes, which arenear the origin, and the inner polyhedron is mov-ing along this same line of sight. Maybe like it’sshooting out of our eyeballs as a kind of abstractweapon of geometry. A Platomic Bomb. Viewedthis way, what it means for the inner shape to beable to pass through the outer is that the two di-mensional “shadow” of the inner shape is entirelycontained within the shadow of the outer shape.
We’ll specify the arrangement of the polyhedraas a rotation and translation; together these are arigid frame (hereafter just “frame”). Because weknow we’re traveling along the z axis, the z com-ponent of the translations are unimportant and wecan just consider 2D translations. Moreover, sincewe just care about the relative positions of the ob-jects, we can say that the outer polyhedron is fixedat (0, 0). We need to be able to rotate both shapesarbitrarily, though.
The inner shadow being completely containedwithin the outer shadow is intuitive, but we shouldbe more precise. The convex hull of a set of 2Dpoints is the minimal convex polygon that containsthem all (here “contains” includes the boundary);

this is the same idea as the minimal skin aroundthe vertices of our convex polyhedron. To get theshape of the shadow, we just project the object to2D along the z axis (easy: (x, y, z) just becomes (x,y)) and then compute the convex hull of the pointsusing standard algorithms. Now we can just askwhether the inner hull is entirely contained withinthe outer hull. Since the outer hull is convex, thisamounts to a standard test that each point on theinner hull is contained within a convex 2D poly-gon. You can find slightly buggy code for this allover the internet. (There are many alternative for-mulations, some of which are discussed below.)
The boundary condition here is very important.The inner points must be strictly contained withinthe outer hull (less-than, not less-than-or-equal),never exactly on the boundary or coincident withan outer vertex. If we allow them to be on the hull,then carving the inner through the outer wouldmake the residue disconnected (perhaps dramat-ically so). It also makes the problem trivial: If theouter and inner have the same frame, then theirshadows are also the same, and the inner one istrivially (weakly) inside the outer. If you think thisamounts to “passing one cube through the otherand leaving a proper hole,” then you and I dis-agree about what proper hole means.
So to solve the Rupert problem for some shape,you need to find two rigid frames that satisfy theabove (and we know that one of the translationscan be (0, 0, 0) and the other (x, y, 0)). How do wefind such frames?
If you have a fast enough test, sampling will sufficefor easy objects like the cube. Here you just gen-erate random frames and test whether the condi-tion holds. You can try all orientations and reason-able bounds on the translation (you do not want totranslate more than the diameter of the cube, forexample, or it will definitely not go through it)!
Generating random orientations  

Generating random numbers is easy using float-ing point roundoff error.[12] How do you generatea random rotation (orientation)? There are a fewdifferent ways to specify a rotation. You can useEuler angles, which are three parameters that givethe rotation around the x, y, and z axes (“pitch,”“roll,” and “yaw”; see Figure 1). This approach ac-tually sucks (famously, Euler was not that good at



math). You can get all orientations this way, butyou will get some orientations more often than oth-ers (this is related to the phenomenon of “gimballock”). Maybe that is okay for you (or Eu-ler) but Iwant all orientations to be equally likely.

Figure 1. Wikipedia[13] provides this useful mne-monic for remembering which axis corresponds toeach of the three words. The pitcher makes sense,since you famously use a pitcher by holding thehandle away from you and turning your wrist topour diagonally towards yourself. But door mustjust be trolling, right?
A good way to do this is using Quaternions, theeven more mysterious second cousins of the com-plex numbers. I will not try to give you an intuitionfor quaternions (since I do not really have one) butthey can be used as a four-parameter representa-tion of orientations that will leave you happy (andpuzzled) instead of sad (and puzzled). Facts toknow about the Quaternions:
  • Most people don’t capitalize Quaternions.• Like complex numbers where you have a + bi,here we have a + bi + cj + dk. The parameters are(a, b, c, d) and i, j, k are “even more imaginary”“constants” that have some impossible relations,like i2 = -1 but also ijk = -1.• You can just think of a quaternion as afour-dimensional vector (a, b, c, d). If this is aunit-length vector, then it represents an orienta-tion. There are exactly two unit quaternions repre-senting each unique orientation in 3D. No gimballock and no favorites.
A good—but not great—way to generate random4D unit vectors is to generate random points on a4D hypersphere, because these are the same thing.There are very fancy ways to do this, but you runthe risk of getting the math wrong, or head explo-sion etc., so I recommend rejection sampling. Rejec-tion sampling is a very robust way to generate uni-form samples in some set. What you do is generate

random points inside some domain that containsthe target set, and throw away points that aren’t inthe target. For example, to generate points in a unitcircle, you can generate points in the 2×2 square(it’s not the unit square) that contains that circle.π/4 of these points will be in the circle, and so youget samples at an efficiency of about 78.5%.

To generate points inside a sphere, you do thesame thing, but in a 2×2×2 cube. This sphere hasvolume 4π/3 and the cube has volume 8, so youget samples at an efficiency of about 52.4%.

To generate 4D points inside a 4D hypersphere (foot-
note: We should say “3-sphere,” or “hyperball”, since the conven-tion is that a normal sphere in 3D is called a 2-sphere, since its sur-face is actually two dimensional. It would just seem to add confu-sion here, though.), you do the same thing, but now thehypervolume is π2/2, and the 4D hypercube has hy-pervolume 16, so you get samples at an efficiencyof about 30.8%.
Upsettingly, as we increase dimensions, the hy-pervolume of the n-dimensional hypersphereapproaches zero (!?) and the n-dimensional



hypercube’s volume grows exponentially, so thistechnique approaches perfect 0% efficiency.

Fortunately, we only need 4D vectors, and 30%efficiency is fine because my computer can calcu-late like 1 billion samples per second and I onlyneed two.
The two samples give the orientations of the outerand inner polyhedra, and we also pick random po-sitions. We then project to 2D, compute the con-vex hulls, and see if the inner hull is inside theouter hull.
The convex hulls  

The 3D shapes are convex, and so their 2D shad-ows are convex. (footnote: It is not completely obvious that
this must be true. One of the ways to believe it follows from a defin-ition of convexity: For every pair of points in the set, the entire linesegment between them is in the set. To show that the 2D shadow isconvex, take any two points in it. These points correspond to sometwo points in the 3D shape, which means (by that definition convex-ity) that the line segment between them is in the 3D set. The projec-tion from the 3D shape to the 2D shadow also transforms that linesegment to a line segment (the projection is linear) and it connectsthe 2D points. So this satisfies the definition of convexity for the 2Dshadow. In fact, all linear transformations preserve convexity by thesame argument.) Rather than just working with the setof points, their boundary polygon is a much moreconvenient representation of the shadow. Here is ashadow of the icosahedron. The darker boundarypolygon is its 2D convex hull:

Computing the convex hull is also “standard,”meaning that you can find lots of slightly buggyimplementations of various algorithms on the in-ternet. The bugs are usually because the routinesare intended for computer graphics and so theydon’t have to “work,” and because the algorithmsare conceptualized in the mathematical worldwhere when you look at a point that’s really closeto a line segment, the point stays on the same sideof the line when you look at it from different direc-tions. This is unfortunately not the case for naiveimplementations using floating point. It usually“doesn’t matter that much,” or “just add a magicconstant you named epsilon,[14]” but unfortunatelywhen you are working with extremely regularshapes like Platonic solids, you will frequently getpoints that are colinear or coplanar and exercisethe too-optimistic beliefs of the code you found. Sothis is another good way to make your afternoonproject take several months.
You only need to compute the outer hull; youcan then just check that all of the inner shadow’svertices are inside it. But I found it was fasterto compute a convex hull for the inner polyhe-dron as well. That way you only need to do thepoint-in-polygon test for the points on the innerhull. The point-in-polygon test is standard; we justhave to make sure we are testing that the pointsare strictly inside, and not on the hull itself.
Optimizing  

Now we can test whether some random orienta-tions and positions (frames) demonstrate the Ru-pert property. It is easy to find solutions for thecube by just sampling. But of course we want tomake it faster, first of all just for the heck of it,but also so that we can solve the unknown cases,



which are presumably harder.
I started with black-box optimization, again usingmy own twisted variant of BiteOpt.[15] Black boxoptimization is good for people like me and Eulerwho are bad at math. The interface to such an opti-mizer is a function like
double F(double a1, double a2, ..., double an)
For some fixed n. The optimizer doesn’t knowwhat the parameters mean; its job is just to find thearguments (a1, ..., an) such that F(a1, ..., an) hasthe smallest value. This is of course impossible ingeneral, (footnote: Not just hard because the function could be
complicated. It’s literally impossible due to diagonalization. Takefor example the recursive function double F(double x) { return-abs(x - Optimize(F)); }. This computes its own minimum, andthen returns the negated distance from the argument to that sup-posed minimum. This makes the purported minimum actually themaximum (0) with a nice convex triangle all around it. In realitythis function will just loop forever, since Optimize works by call-ing the function many times. ) but for many well-behavedfunctions these optimizers are nonetheless able todo a good job.
Here the arguments will be the orientations of thetwo polyhedra and the position of the inner one.Wecan represent the orientations with quaternions(four parameters each) and the position as the (x,y) offset, totaling ten parameters.
The optimizer does need some kind of surfaceto optimize over; it does not work well if there isjust a single point where the function returns -1and it is a flat 0 everywhere else. I tried several ap-proaches here. The one that worked best for mewas to take all the vertices on the inner hull thatare not inside the outer hull, and sum their dis-tance to the outer hull. This prefers the verticesto be inside where we want them, and increasesthe penalty as they get further outside. It is essen-tial to add a nonzero error when the point is notstrictly inside; if the point is exactly on the hull orthe distance rounds to zero, we still need to add asmall positive value. Otherwise the optimizer willquickly find degenerate “solutions” such as settingboth orientations the same.
The other rub is that the optimizer wants to tryany value (within specified bounds) for the argu-ments, but we need each orientation to be a properunit quaternion. Simply normalizing the four in-puts would work, but as we observed before, ran-dom samples in this parameterization are not uni-

formly random orientations. My approach here isto first choose actually random quaternions for theouter and inner shape before beginning optimiza-tion. I then optimize within fairly narrow bounds(like -.15, +.15) for the quaternion parameters, andadd that as a “tweak” to the random initial quater-nion, normalizing to get a proper orientation. Thisis still not uniform, but it is locally closer to uni-form. Since we will try optimization millions or bil-lions of times from uniformly random starting ori-entations, we will get good coverage of all orienta-tions. Other parameterizations of the orientationare possible. It is definitely desirable to have fewerarguments (as the complexity naively grows expo-nentially in the number of optimization parame-ters), but simply using the three-parameter Eulerangles runs into the aforementioned problems.
It works!  
Anyway, that works! This was like, the first week-end of the project. It’s able to find solutions to thecube in milliseconds, and so I added more polyhe-dra to the collection, and solved those in millisec-onds as well.
One of the most tedious parts of this was gettingall of the polyhedra represented in computer form.I was somewhat surprised that the formulas forthese things often involve wacky irrational coordi-nates like the “tribonacci” constant, which is likethe Fibonacci (Fi- means two, like in the numberFive) but where we take the sum of the previousthree numbers instead of two. The ratio of termsconverges to:

(1 + 3√(19 + 3√33)) + 3√(19 - 3√33)) / 3
Like, I would expect √2 stuff. But I guess I shouldnot have been surprised by that, because that’sjust math. Anyway, since these are all convex poly-hedra, at least you don’t need to explicitly spec-ify the connectivity of the vertices. I just computethe 3D convex hull (using a slow polynomial-timesearch for coplanar vertices where all the pointsare on one side of the plane) to get the faces; it’sokay that this is slow because you only need to dothis once at program startup time. (footnote: In fact, the
solvers mostly just work with the point sets; we know they are con-vex so this is enough for us to implicitly reason about the shape.We do at least want to draw the polyhedra for debugging or pos-terity purposes.)
Once all the polyhedra are in the computer, I eas-



ily confirmed what we already knew: The Platonicsolids, ten of the Archimedean solids, and elevenof the Catalan solids, are Rupert.
Alternate solvers  

Of course we should check uniformly random con-figurations, but I tried some other approaches aswell:
Max.  This first optimizes the outer shadow sothat it maximizes its area. We then perform opti-mization only on the inner shadow. Intuitively,you want the outer shadow to be “bigger” and theinner shadow “smaller,” so this makes sense as aheuristic and reduces the number of parameters.Largest area does not mean it is best at fitting agiven inner shape, though. This strategy can solveall the polyhedra (with known solutions) except:triakis tetrahedron.
Parallel.  Thinking about making the innershadow as small as possible, we see that we often(always?) reach a numeric minimum when at leastone face is parallel to the projection axis; this facethen becomes zero area in the shadow. This strat-egy chooses two non-parallel faces of the innerpolyhedron at random, and then orients the poly-hedron such that these are both parallel to the zaxis. It also rotates the polyhedron around the zaxis such that one of these faces is aligned withthe y axis (this doesn’t really change anything ex-cept to make the numbers rounder and the hullseasier to interpret, e.g. the cube will always be anaxis-aligned square). Then we just optimize theouter orientation and position to fit around thishull. This strategy can solve all the polyhedra ex-cept: tetrahedron, triakis tetrahedron.

 

Figure 2. The dodecahedron with two non-parallel

faces aligned to the z axis.
Origin.  Optimize both rotations, but leave bothpolyhedra centered on the origin. This reduces thenumber of parameters, although the translationparameters are the best behaved of the bunch (op-timizing the translation parameters alone is actu-ally a convex problem). The main reason to do thisis to see whether there are always solutions thathave this form. It does not appear to be the case:The tetrahedron-like shapes seem to require trans-lation. (footnote: I gave a half-hearted attempt to prove this by
computer in the “Other approaches” section below. Given how nar-row the clearance is for the triakis tetrahedron (and how simplethe tetrahedron is), it may be tractable for someone who is good atmath.) This strategy can solve all the polyhedra ex-cept: pentagonal icositetrahedron, tetrahedron, tri-akis tetrahedron, truncated tetrahedron.
Special.  Combines parallel and origin, leavingonly the other rotation to optimize. Like the ori-gin approach, the main reason is to see whethersolutions of this form exist; it turns out to work inall the same cases as the origin method. This is allof the polyhedra except: pentagonal icositetrahe-dron, tetrahedron, triakis tetrahedron, truncatedtetrahedron.
GPU solver  

At this point, I was easily solving the polyhedrawith known solutions, like each in a few hundredmilliseconds, and not at all solving the other ones.I figured one possibility was that these were justharder, and so I needed to be able to optimize thesolver to try a lot more times. One way to try a lotmore times is to do it on a Geometric PolyhedronUnit. Part of the way I justify to myself buying theworld’s physically largest (footnote: It’s comically large. I
literally broke my computer trying to install it, and had to buy anentirely new computer with a bigger case just to fit it in there.) andhottest GPU (at the time), the NVidia RTX 4090, isthat I can use it for important tasks like this andnot just sniping simulated soldiers in glorious 4kHDR at 144fps. So I rewrote the solver in OpenCL.
In some ways this problem is well suited to theGPU; it excels at parallel numerical tasks onfloating-point numbers. The polyhedra here aretoo small to benefit from parallel computation ontheir vertices. But we can easily get massive dataparallelism by trying multiple optimization in-stances in parallel. On the other hand, the convexhull calculation and black box optimizers are not



natural for the GPU (OpenCL does not really sup-port recursion!).
To test whether the inner shadow is within theouter shadow, I replaced the convex hull-based testwith one that is worse but more easily parallelized.For each polyhedron I generate its triangulation,where each face is made with triangles (this is triv-ial to do with triangle fans because they are convexpolygons). Now observe that when I project thesetriangular faces to the 2D shadow, any point thatis contained in the shadow will be contained in atleast one of these projected triangles. I can checkall of the triangles in parallel. I can also computethe error for a point as its shortest distance to anytriangle (like we previously used the shortest dis-tance to the hull). The point-in-triangle tests mustbe strict as before, to prevent points exactly on theouter boundary from counting. Alas, this test isnot quite correct here: It is possible for an interiorpoint to land exactly and only on interior edges ofthe triangulation. Take an axis-aligned cube, forexample; the point at the exact center of its squareshadow will lie on edges of the triangulation, nomatter which one you use. This is not ideal, but itonly gives us false negatives (failing to find a solu-tion if one exists), which is not a serious problem.

 

Figure 3. Left: A cube may be triangulated like this(only top and bottom triangulations shown for clar-ity). Right: Viewed from the top, the center pointis not strictly within any face triangle.
Because I did not want to port the black-box opti-mizer, and because we can do better anyway sincewe understand the problem being optimized, I im-plemented a proper gradient descent optimizerfor the GPU. This subject is well documented so Iwill not belabor it here, but I performed “approxi-mate numerical differentiation” to compute the de-rivative with respect to each parameter indepen-dently. This involves evaluating the function oneadditional time for each parameter (with a smalltweak), assuming that the slope is locally linear.

It’s not too bad to implement, but since this prob-lem has 10 optimization parameters, it is a sig-nificant amount of additional evaluation. I don’tthink this problem lends itself well to analyticalderivatives (even though most of the space is verysmooth, the regions of interest are near the bound-aries, either as a point moves into its own shape’sshadow, or across the other’s hull), but maybe youor someone else who’s smarter than me could fig-ure it out. Lazy people would use automatic differ-entiation and might be happy with that.
Anyway, this all works too! It is indeed fasterthan the CPU version, although it is harder toplay around with algorithmic tweaks and it scalesworse to polyhedra with larger triangulations. Imainly found solutions using the CPU methods,and mainly because running things on the GPUmeans I can’t simultaneously use my computer forother important activities like over-the-top violentfirst-person shooter games.
Solved!  
And then I found a solution for one of the wishlistpolyhedra! Actually all of them. I didn’t get too ex-cited, though; there had been many false positivesso far (due to bugs), and the reported numberswere like this:
  outer frame:  -0.99999999999999978,-3.7558689392125502e-16,-3.5847581116984005e-08,  3.7558689392125502e-16,1.0000000000000002,-2.0954657592967021e-08,  3.5847581116984005e-08,-2.0954657592967021e-08,-0.99999999999999956  0, 0, 0
  inner frame:  3.3306690738754691e-16,0.99999999999999978,5.551115123125779e-17,  2.7755575615628914e-16,-5.5511151231257852e-17,0.99999999999999978,  0.99999999999999978,-2.2204460492503128e-16,-2.7755575615628909e-16,  -1.4197330001097729e-18,2.8394660002195473e-19,-0.0051151272082079749
  Ratio: 0.9999999999999999766
Note how everything is either really close to 1 orzero. Recall that two equal frames produce identi-cal shadows, and that these are invalid Rupert con-figurations (the “hole” eats the entire shape). Sotoo when the orientations are the same up to sym-metry (e.g. one rotates the cube 1º and the other91º). So I knew it was possible that we could getsomething really close to identical shadows, butthat they might look like they satisfy the conditionwithin the precision of double-precision floatingpoint numbers. Also, given my fetish for IEEE-754,I’m certainly asking for it! Visually inspecting thesesolutions, this is exactly what they looked like.
ON THE OTHER HAND, some solutions canhave a lot of nines in them! For example, the best



known (to me) solution for the triakis tetrahedroncomes within one one-millionth of the radius of thepolyhedron, requiring a monumental amount ofzooming-in to even perceive this thread as hav-ing volume. This would be a good reason that no-body found these solutions before: Perhaps theyused single-precision floating point, or coarse val-ues of “epsilon,” or rejected them with visual in-spection? One of the solutions, for the rhombicosi-dodecahedron, actually had a computed ratio of0.99999998752759711, which is definitely in therange where you start expecting doubles to actlike numbers.
So I invested further effort.
Rational solvers  

The right way to deal with floating point inac-curacy is to not use them. Lots of geometry willwork great with other number systems, so with alittle finesse we can work on this problem using ra-tional numbers and sidestep the numerical prob-lems. I used my own wrappers around GMP[16] forarbitrary-precision rational arithmetic. There arejust a few problems:
Shapes are not rational.  Most of the polyhedraconsidered do not have vertices with rational coor-dinates! The cube is easy, but even something ascanonical as the dodecahedron has some points oninteger coordinates and others on φ coordinates,and there’s no way to scale the shape so that every-thing is rational. To solve this, I implemented ratio-nal approximations for each of the shapes, whereyou can decide ahead of time on an arbitrarilysmall epsilon (alternatively, a number of digits ofprecision) for the coordinates. For these shapesyou just need a routine that can compute squareand cube roots to arbitrary precision. (footnote: One
non-obvious but important thing to consider here: For a given ac-curacy goal, there are infinitely many rationals that fall within thatrange. Most of these are bad choices because the numerator and de-nominator are enormous numbers. So it is important that we notjust generate a rational that is close to the target value, but that wegenerate a reasonably compact rational; otherwise downstreamcomputations need to do a lot more work. Many classic approxi-mation algorithms do not account for this, since for example the ef-ficiency of a float does not depend much on its specific value.) (Ialso did π, which is fun, before realizing I don’teven need it.) Since the resulting shapes are not ex-act, any solution we find might only work for theslightly inaccurate shape, but once we have a solu-tion we can verify it by other means. It’s also possi-ble we would fail to find a solution (because the re-

quired precision is still too low), but then we cantry again with higher precision.
Search procedure needs roots.  The search pro-cedure we have been using so far involves a fewoperations that are not available for the rationals.For example, our error function involves the dis-tance between a point and the hull, which needs asquare root (square roots of rationals are not nec-essarily rational). This is easily handled by just us-ing the squared distance as the loss function (thisis common even with floats and sometimes worksbetter!) A little trickier is rotation. Before we usedunit quaternions to represent orientations. Normal-izing a quaternion means dividing by its length,which involves a root; we can’t do this with ratio-nals. Fortunately, we do not actually need unitquaternions. The rotation induced by an arbitraryq (other than the zero quaternion) can be given as

rot(v) = qvq-1

and if you work this all out, you find that thequaternion’s length is only used squared, whichmeans that you never need to calculate the root.This means that if we start with rational coordi-nates, we can represent orientations as non-unitquaternions, and get rational rotated coordinates.Rational translation is trivial. All we have to do ismake pure rational versions of the convex hull cal-culations (mostly just needs cross product; thesebecome much cleaner when you know you haveexact line-side tests due to exact representationsof the points, too) and point-in-polygon tests, andso on. Rational arithmetic is like millions of timesslower than floating point, but other than that, it’sreally nice!
The optimizer is still double-based.  Now wecan represent arbitrarily fine rotations and transla-tions exactly, but the optimizer is still working ondouble-precision numbers. This is easily handledby scaling down the parameters before runningthe error calculation. For example, if the optimizerasks to try a value of 0.123 for a parameter, we con-vert that to a rational, and then divide it by 220 orsomething large so that we only work in a verynarrow range around the initial value. This scale ischosen randomly and independently for each opti-mization parameter.
I got this working. We are primarily interested inseeing if there are actual solutions near the sup-



posed ones that may just be floating point error. Iuse those solutions as starting points for optimiza-tion, as well as two random equal rotations and notranslation. Alas, the purported solutions are notactually valid, and they do not seem to be close toany solutions. I ran the rational search for manydays on the unsolved polyhedra with no joy.
All told, I ran 165,768,128 iterations of the varioussolvers (each trying thousands of configurations)on just the wishlist polyhedra. That's a lot of spicymeatballs!
Noperts  

By this point I was feeling pretty confident that theRupert conjecture is actually false. This would cer-tainly explain why nobody had solved these fivepolyhedra before! And so I set out to try to findmore (conjectured) counterexamples, in the hopesof gaining some insight or at least advancing thestate of the art in some small way.
I call such a candidate unsolvable shape a “Nop-ert.” Since I have a fast solver, I can look for Nop-erts by generating a polyhedron and solving it. Ifsolved, it is no Nopert!
Random.  First, I just generated random pointsin a L-∞ unit ball (not a unit cube) and computedtheir convex hull. Since I wanted to try findingpolyhedra with a specific number of vertices, I addand remove points until the hull has the desiredsize. I can simply pass this to the solver. I tried 87million random polyhedra of various sizes, and allof them were easily solved. This included shapeswith 24 or more vertices, where I know that Nop-erts exist (the wishlist polyhedra). So this suggeststhat Noperts are extremely rare, or that this is nota good way to find them, or both.
Cyclic.  Generating random polyhedra with a cer-tain number of vertices is a bit fiddly because ofthe necessity of keeping them convex. Simpler is togenerate all the points on the unit sphere, which issometimes called a cyclic polyhedron (footnote: By anal-
ogy with a cyclic polygon, but not to be confused with a cyclic poly-tope! Even though both polygons and polyhedra are polytopes!). Itried a million of these, but still every one was eas-ily solvable.
Adversary.  Next I tried generating shapes thatwould specifically foil the solver. I start with a ran-dom polyhedron with the target number of ver-

tices. I solve it; if I can’t solve it within a certainnumber of iterations then it is a Nopert. Other-wise, the solution produces the 2D shadows wherethe inner is contained within the outer. I can makethis specific solution invalid by moving one pointon the inner hull so that it touches the outer hull.I then normalize the shape’s diameter so that itdoesn’t grow without bound, and repeat. The newshape is typically solvable with a small tweak tothe orientations, but the hope is that we can pushvertices out just enough to invalidate every solu-tion family, but not so much that it creates new so-lution families. This produces much more interest-ing shapes, some of which are identified as provi-sional Noperts!
Here are some examples:

Alas, running the solver for many more iterationson these eventually solves them. Here are residuesfor the same three:

In fact, none of the shapes found with the adver-sarial method survived persistent grinding withthe solver.
Unopt.  Fond of the adversarial approach, I triedmaking it even more explicit. Here I nest theblack-box optimizer inside itself: An outer opti-mizer manipulates the vertices of a shape to maxi-mize the difficulty of solving the shape with the in-ner optimizer. (I use the optimizer iterations as themetric to maximize; this is important so that wedon’t get artificial variance from me using my com-puter for other things, like video games.) Alas, thisapproach never found any interesting Noperts.
Reduction.  So far, I found no Noperts, but I knowthat they exist; the wishlist polyhedra are exam-



ples! Maybe Noperts are very rare, or require some-thing special about their coordinates. The nextthing I tried was to check if simplified versions ofthe snub cube (which is the smallest wishlist poly-hedron at 24 vertices) are still Nopert. One way tosimplify a convex polyhedron is to delete some ofits vertices. 224 is not that big, so I tried every sub-set of the snub cube. Well, not every subset: Thesnub cube is highly symmetric, so a lot of its sub-sets are effectively the same. It seemed like toomuch programming work to identify the symmet-ric subsets (and error-prone). Note however thatwe know we are removing at least one vertex, andthe snub cube is vertex transitive (all vertices are“equivalent” up to symmetry). So I can halve thesearch space by saying without loss of generalitythat vertex 0 is always removed. Then all binarywords of length 23 (1 if the vertex correspondingto the bit is kept, 0 if removed) identify a reducedsnub cube, so I just loop over all 8,388,608 of theseand solve them. Indeed, every one has a solution.So we know that the snub cube is locally minimal;it needs all 24 of its vertices to defy easy solution.
Symmetry.  Another obvious fact about the wish-list polyhedra is that they are symmetric. So thenext thing I did was to explore random symmet-ric shapes.
I learned something new here (which is wellknown to mathematicians; I am just a Cyclic Sym-metry Idiot). I naively thought that there were lotsof ways to make symmetric shapes in 3D, becauseI was generalizing from a technique in 2D used bychildren to draw symmetrical stars (let’s call it theSpirograph method): Take some points, and anywhole number n, and repeat those points n timesaround a central point, at intervals of 1/n. I thoughtyou could also do this in 3D, by taking some pointsand iterating them around one axis like this, andthen iterating all those points around another axis(perhaps with a different divisor), and perhapsaround a third axis. This does not work! I mean, youget a shape, but it is usually not symmetric in theway I wanted. The reason is that most of the time,the later rotations violate the symmetries inducedby the earlier ones. You can try iterating until sat-uration, but then you usually get an infinite pointset, like a cylinder or sphere.
There are two 3D extensions of the Spirographmethod for generating a finite symmetry groupfrom a whole number n. One is dihedral symme-

try, where for example you extrude the 2D poly-gon to a boring 3D prism (opposite faces are thesame polygon, and the side faces just connect themwith quadrilaterals). This symmetry is “dihedral”because you can rotate it by a 1/n turn, or flip itover, and get the same shape. The other is cyclicsymmetry, with an example being that you takethe 2D polygon and connect all its vertices to a sin-gle point (not on the same plane). This object canbe rotated by 1/n turns to get the same shape, butflipping no longer works. Amazingly, these arethe only infinite families (parameterized by n) ofsymmetries in 3D! The Spirograph toy is just notthat fun in 3D; at best it just makes extrusions of2D Spirographs.
What about finite symmetries? Well, in 3D thereare exactly three other families of rotational sym-metry, and they correspond directly to the Pla-tonic solids: You have the tetrahedral group, theoctahedral group (which is the same symmetry en-joyed by the cube, its dual), and the icosahedralgroup (the same as the dodecahedron, its dual).The group operations correspond to the vertices,edges, and faces of the associated Platonic solid.For example, if a face is a triangle, rotating 1/3 turnaround the center of that face is one operation. Foran edge, flipping so that its two connected verticesswap places is another. This is awesome! It gaveme a new appreciation for how canonical and im-portant the Platonic solids are.
Polyhedra with dihedral and cyclic symmetry aretypically not challenging for the Rupert problem:If your extrusion is shallow, then you basicallyhave a manhole cover that is not quite round (andso it falls through the manhole, injuring a sewerworker who should not have been down thereanyway while they were putting the cover backon), or an unnaturally regular churro, which canpass through itself the other way. (footnote: Actually,
I think this would be a good simplified case to study; can we findthe crossover point where manhole cover becomes churro, andprove that it always exists? I added this to the list of open prob-lems below.) So I explored polyhedra that have the re-maining symmetry groups. One way to do this isto start with some point set, and then apply opera-tions from the rotational symmetry group (addingthe points that arise from the operation) until youreach saturation. This will saturate, unlike in theSpirograph method described above. But one thingto notice about this approach is that each point inthe starting set creates a number of points from the



symmetry operations (its “orbit”), and it can be alot of them unless it is in a special position. For ex-ample, take tetrahedral symmetry. If you start witha single point and call that one of the vertices of thetetrahedron (a special position), then the inducedshape is only four points. But it is the regular tetra-hedron, which we already know about. If that pointis placed in a general position, the face operationthat rotates by a third-turn (because the oppositeface is a triangle) will turn this point into a trian-gle, which is then repeated four times by the othergroup operations, yielding a shape like a dumpyicosahedron (snub tetrahedron; 12 vertices). Withmultiple starting points, we get the union of theirorbits, leading to a combinatorial explosion in ver-tex count unless the points are chosen carefully inrelated special positions. As a result, these symmet-ric polyhedra either tend to have lots of vertices(from vertices in general position), or to simply bedistorted versions of one of the P/A/C solids (fromvertices in special positions).
So I was unable to find any Noperts with fewerthan 24 vertices. I did find several with 24 vertices,which all look like this:

These are just slightly wrong snub cubes! Itshouldn’t surprise us to find these here, since as Ijust said there are not that many different ways tocreate symmetric polyhedra, and the snub cube isthe only semiregular one with 24 vertices that is un-solved. We also shouldn’t be surprised that distor-tions of the snub cube are hard to solve, since a truecounterexample to the Rupert conjecture is likelyto be in an infinite family of similar shapes. (footnote:
This is for the same reason that each solution is in an infinite fam-ily: As long as you have nonzero clearance between a vertex and thehull, you can always move the vertex half-way closer to the hull. Itis plausible that a counterexample to the Rupert conjecture couldbe exact like the sphere, where if the outer sphere is any larger thenthe inner sphere will fit. But this seems unlikely.) I was still sur-prised. Even if these looked significantly different,they wouldn’t really be anything new since we al-ready have a 24-vertex Nopert, the pristine andundistorted snub cube. This leads me to

Conjecture: The snub cube is the smallest coun-
terexample to the Rupert conjecture (by number
of vertices).

Here are some larger Noperts. Neither of these ob-viously resembles one of the wishlist polyhedra,so they may be new. On the other hand, they mayalso have solutions that I just didn’t find; in thatcase they are not that interesting:

These have 36, 56, and 120 vertices respectively.The 120-vertex polyhedron is quite curious since ithas two large flat hexagonal faces. Due to its sizeit’s slower to optimize than others, but it has sur-vived at least 6 million attempts.
I ran various Nopert searches for 378 hours of walltime. I made some record-keeping mistakes (dou-ble counting) of the number of shapes evaluated,but it was at least 117 million, and probably twicethat.
Bonus digression: Symmetry  

I just mentioned that there are only three finitesymmetry groups in 3D: We have the tetrahedralgroup, the octahedral group, and the icosahedralgroup. The octahedral group is the symmetries en-joyed by the cube and octahedron (duals) and theicosahedral group is the symmetries savored bythe dodecahedron and icosahedron (duals). Thetetrahedron is self-dual. Everything works on har-moniously.
In 4D, we get 4D analogues of each of these sym-metry groups, and of the Platonic solids. These arethe 120-cell (made up of regular dodecahedra) andits dual, the 600-cell (made of icosahedra). Youknow the hypercube, and its dual is the hyperocta-hedron, and then there is a hypertetrahedron likeyou would expect. In 4D we also get one more sym-metry group, which corresponds to another sortof Platonic solid in 4D, called the 24-cell.[17] Thissolid is self-dual, like the tetrahedron. This ishyper-awesome. Very happy so far.



What do you think happens in 5D?
Wrong! In 5D, and all greater dimensions, thereare just two finite rotational symmetry groups.There’s just one called A5 corresponding to the 5Dtetrahedron (5-simplex) and one called B5 corre-sponding to the 5D hypercube and 5D octahedron(5-orthoplex). No additional symmetry groups,no additional Platonic solids.[18] What? Fuck you!You’re telling me that 3D and 4D are special? Nomore cool shapes after that, and we don’t evenget to keep some of the cool ones we already had?It seems that in 5D and beyond, there is just notenough space. Perhaps, then, 5D chess is actuallya boring, easy game for children, like Candyland?
Bonus digression: Epsilon  

Speaking of epsilon, and my obsession with minu-tiae related to it, it itself a kind of minutiae: Mostnumerical code (including this Rupert solver) hasa line like this in it:
return std::abs(x) < 1.0e-6;
Here 1.0e-6 is one one-millionth, a typical valuefor epsilon. It’s actually a pretty nasty choice sinceit is not even representable as a float. With clang19, this compiles to code like
  .LCPI0_0:          .quad   0x7fffffffffffffff          .quad   0x7fffffffffffffff  .LCPI0_1:          .quad   0x3eb0c6f7a0b5ed8d  Threshold(double):          andpd   xmm0, xmmword ptr [rip + .LCPI0_0]          movsd   xmm1, qword ptr [rip + .LCPI0_1]          ucomisd xmm1, xmm0          seta    al          ret
which makes sense (ucomisd is unsigned compari-son of floating-point registers) other than the twocopies of 0x7fff... (?). Most of the time we don’tcare about the actual value of epsilon, and remem-ber: Powers of two are the fastest numbers. So an-other thing I tried was to optimize this epsilon test,instead writing the clear and portable
  static constexpr uint32_t target_exp =    std::bit_cast<uint64_t>(0x1.0p-20) >> 52;
  uint32_t exp =    std::bit_cast<uint64_t>(d) >> 52;  return (exp & 0x7FF) < (target_exp & 0x7FF);
This checks against a cleaner epsilon (the power

of two close to one one-millionth) by just checkingthe exponent bits directly. It compiles to the muchmore pleasant
        movq    rax, xmm0        shr     rax, 52        and     eax, 2047        cmp     eax, 1003        setb    al        ret
It is not clear that this code is actually faster, buteach instruction takes a single cycle and it per-forms no memory loads. It probably saves a few cy-cles of latency but vectorizes worse. It was a totalwash in benchmarks. However, I spent some timearguing with AI about it, and eventually won. Likea coward, it weasled out of a formal apology:
   

Escape COD  

Another GPU-based method I tried was to 100%the multiplayer mode of Call Of Duty: Black Ops 6.It’s not the sixth Call of Duty game (come now), it’sthe sixth Black Ops game!
To me, “100%” meant:   • Get to Prestige Master• Get the “Multiplayer 100%” badge• Get “mastery” for every item in the game.
Prestige Master.  It is easy enough to maxout your level to 55 (?) in this game, but thenyou can “Prestige” (jargon verb meaning



roughly “shame”) and reset your progress, al-lowing you to make meta-“progress” throughten-times-doing-this–ness of Prestige, and then1000 levels of still-really-doing-this–ness of “Pres-tige Master.” This resetting allows you to feel neu-rotransmitters when you “unlock” something forthe second, or third, or tenth time. The neurotrans-mitters are necessary due to the receptor desensiti-zation caused by the constant stream of messagesand medals telling you how good you are, or howmany points you got, or how hard you killed sixor seven guys at the same time by spamming themwith grenades.[19] This is the easiest thing to do,since it just happens by getting points from play-ing the game, no matter how you do it.
Multiplayer 100%.  This is essentially an achieve-ment list. Most of them happen naturally by justplaying, but some require an irritatingly specificset of circumstances (“With the enforcer Perk Spe-cialty active: Get 10 kills while War Cry is active ina single match”) and so they require playing a lot,and in a specific way. For calibration, simply com-pleting this list is apparently enough content for365k views in the genre of “I played video gamesa lot” on YouTube.[20]

Every item mastery.  This is the most tedious. Mas-tery means you did the thing a lot. You get mas-tery for a weapon for getting 500 kills with thatweapon, for example. For good weapons, this iseasy and actually fun. For the many bad weapons,it is an awful grind. For example, there are theserocket launchers that are mainly designed forshooting down helicopters, but if you can manageto fire them at a human without getting killed be-fore you finish looking down the sight, and youland a basically direct hit on their soft fleshy body,then you get a kill. Just 500 of those! Then there areweapons seemingly designed just for humiliatingyour opponent, like a hand-held power drill thatyou can drill into them twice at close range. Just500 of those! Worse is the scorestreaks, which youactivate by getting a certain number of points perlife—generally a lot—and some of them will onlydo their thing in certain situations (like intercep-tors, which destroy airborne enemy scorestreaks).Thankfully these only need 100 kills. Then thereare field upgrades, which are on a timer that onlyactivates a few times per match. So that means thatyou only get a few attempts per game to disorientand then kill some enemies with the pathetic “neu-rogas” item, or to perform a “tactical insertion”

and then kill an enemy within five seconds of beingborn. Worst of all are the “non-lethal equipment,”which includes items seemingly designed for a dif-ferent game, like the “proximity alarm.” This thingalerts you when there is an enemy—which therealways is—and then maybe if you kill the enemywhile the alarm is beeping, it registers progress to-wards mastery. So after spawning, you hope thatyou can quickly throw a proximity alarm on somenearby wall and kill an enemy that you were go-ing to kill anyway, before they kill you withoutdoing that, all the while trying to intuit the undis-closed logic by which it will count this as a “prox-imity alarm assist.”
   

Anyway, I finished Cube Octahedron Dodecahe-dron: Block Ops 6 on the evening of the SIGBOVIKdeadline, 28 Mar 2025—after some 178 hours of ac-tive in-match time—and escaped this game.
Note: I am not in any way recommending thisgame. I simply got addicted to it, since sometimesI need to keep myself awake until 2am with eyesdry from being transfixed to a flashing computerscreen while I white-knuckle the mouse and key-board, grinding for achievements. It is essentiallyartless (except sometimes by accident), and I onlyplayed it because I am a Counter Strike Idiot. Youcould perhaps use it for anthropological study ifyou are interested in a disturbingly high densityof people for whom their love of Donald Trumpis so important to their identity that they cram itinto their 16 character character alias.[21] The onlything I unironically like about this game is thatwhen a match ends, you endure a few seconds of



slow-motion invincibility, where environmentalboundaries will not kill you. With good planning,this lets you explore the outskirts of the death-match map beyond where you would normallybe able to reach (for example, in Stakeout, you canjump to a nearby building and run up its stairs toa balcony). Although you are invincible and can-not die, environmental effects like drowning stillapply. If you jump into water at this point, youwill start to suffocate through the post-game se-quence, and can wind up extremely asphyxiatedat the same time you do your victory dance in thewinner’s circle: True success!
Aside from the fact that this could run simultane-ously with CPU-based solvers, this approach sur-prisingly did not yield any results for the Rupertproblem.
Other approaches  

I also tried explicitly proving that solutions donot exist for some of the wishlist polyhedra. I’mnot smart enough to do this analytically, but I amenough of a Constraint Solver Idiot to try to con-vert it into a computer math system in the hopesthat it can prove it for me.
The SMT solver Z3[22] has a good reputation (eleventhousand citations!) so I tried it out like I usuallydo, and again I was disappointed. I encoded theproblem as follows:
Two 3×3 matrices, representing the rotation of theouter shape and inner shape (no need to even re-quire the shapes to be the same here). We can as-sert that the matrix is a rotation by requiring itto be orthogonal and to have a determinant of 1;these are non-linear constraints but pretty clean.We can also bound every entry to be in [-1, 1]. Asan optimization, we can also put bounds on thetrace of the matrix (sum of diagonal); since theshape is symmetric we know that we only have tosearch rotations up to some maximum angular dis-tance, since distances further than this amount arethe same as first applying a symmetry operationand then rotating by a smaller amount.
We also hypothesize variables for the 2D transla-tion of the inner shape.
We then compute the resulting vertices by multi-plying each original vertex coordinate (constant)

by the corresponding matrix, projecting to 2D,and adding the translation. This gives us two 2Dpoint sets, and we want to assert that the innerone is entirely contained within the convex hull ofthe outer. One way to do this is to assert that eachpoint is strictly within at least one of the trianglesof the outer point set. (footnote: This has one problem we
discussed before, where we have difficulty including internal edgeswhile excluding external ones. I figured that if I could get a result,filling this hole in the proof should be an easy follow-up.) Thepoint-in-triangle test involves the cross product,which is also nonlinear. I settled on a different ap-proach instead: A point is contained within theconvex hull of the outer point set iff it can be ex-pressed as a convex combination of all of the outerpoints. The convex combination is a linear combi-nation where the weights are in [0, 1] and sum to1. Moreover, it is not on the outer hull if all of theweights are strictly greater than 0. This is more con-straints than the triangle approach, but they are alllinear constraints, which SMT solvers supposedlyeat up like candy.
Then you can run this thing and it can tell youwhether it is satisfiable (with solution!) or whetherit is unsatisfiable (proving that the conjecture isfalse, at least if Z3 does not have a bug) or “un-known” if it can’t figure it out one way or the other(some theories are undecidable, even for some de-cidable theories, Z3 is incomplete). Or it can print
(nlsat :conflicts 2 :decisions 0 :propagations 40    :clauses 740 :learned 2)
and then sit there for 40 hours with no other feed-back, which is what happened. As usual! My king-dom for a progress bar!
I didn’t have high hopes for the unsolved polyhe-dra, but it also fails to find solutions for the cube(it’s easy; even if you just sample randomly andcheck you will find them after a few million at-tempts) unless I give it a lot of hints about the so-lution (e.g. if I assert values for the rotation matri-ces). No doubt there’s a smarter way to encodethis that would work better, but it wasn’t even inthe ballpark of working, so I wisely just moved onto video games.
I also thought it was plausible that Z3 could provea simpler theorem, like that a Rupert configurationfor the tetrahedron requires a nonzero translation.This has a lot fewer variables. Still, no dice—noteven a D4!



It’s decidable‽  

I also learned that first order real arithmetic is de-cidable! Maybe I already knew this, but it hadnever quite sunk in how surprising it is, given howeasily things become undecidable when you havenumbers around (for example, it’s undecidablewhether a single polynomial has integer roots![23]).But Tarski proved this[24] in the 1930s, before therewere even computers to be disappointed in. Firstorder real arithmetic here means any set of equa-tions or inequalities on real-valued variables, con-stants, multiplication, addition, division, negation,conjunction and disjunction, and ∀ and ∃ quanti-fiers. The Z3 programs I just described are easilywithin this fragment, and so that means it’s decid-able whether the wishlist polyhedra are Rupert.Unfortunately, as a practical matter even a mod-ern approach like Cylindrical Algebraic Decompo-sition[25] is doubly-exponential, so with a modestnumber of variables like we have here, it is onlytheoretically decidable. Still, it means that we cancreate a Turing machine program that eventuallyeither solves all of the wishlist polyhedra, or de-finitively disproves the entire Rupert conjecture.I don’t need such a Turing machine, so I didn’tbother with that.
Results  

This section lists the results for each of the P/A/Cpolyhedra. If the polyhedron has a known so-lution, the residue with the highest clearance isshown. Clearance is defined as follows: Take theminimum Euclidean distance c between the 2D in-ner and outer hulls, and the radius r of the smallestsphere that contains all points in the polyhedron.Clearance is then c/r; the radius is just a normaliza-tion term so that this does not depend on the scaleof the polyhedron. The ratio is another quality met-ric, which is the area of the inner shadow dividedby the area of the outer shadow. All else equal,a lower ratio is better, but some low-ratio solu-tions look bad because they have very thin walls.A third obvious choice would be to maximize vol-ume of the residue solid, but this is computation-ally expensive and might anyway have the samethin-wall problem that the ratio metric does.
Like everything in this paper, I generated theseimages using software I wrote from scratch. The

polyhedra themselves are very straightforward, al-though I got fed up with trying to pose them bytyping in look_at frustums by hand and so I builta little video game version where you can steeraround the shape in 3D with the joystick to picka good angle. The residues—the little spaceshipcrowns left over after the Rupert process drills ahole through the solid—were a different story. Ispent quite a bit of my vacation on a boat imple-menting a routine that subtracts this infinite extru-sion out of the solid and then simplifies the result-ing mesh, while everybody else was drinking beerand “relaxing.” Note to past self: Save yourself alot of heartburn and just use rational arithmetic forthese things! My idea is that they would be niceclean vector graphics for the PDF, but as the SIG-BOVIK deadline recedes in my rear-view mirror,I suspect they are going to be camera-ready as the“placeholder” PNG files. David Renshaw just usedBlender to perform the subtraction and got beauti-ful results for his video; he was able to spend histime on things like making it look good, unlikethis Constructive Solid Idiot.
Scorecards  

Tetrahedron 
Class: PlatonicFor any reasonable way of counting, the tetrahe-dron is the smallest possible polyhedron!Vertices: 4Edges: 6Faces: 4Tier (shape): B “Too sharp.” Ratio: 0.9161697Clearance: 0.006747735Tier (Rupert): A “You thought the shape itself wassharp? This looks designed to puncture tires.” Fun fact: Triangle man hates particle man.



Cube 
Class: PlatonicYou have probably already been introduced to thecube. It’s six squares, one for each of “top, bottom,left, right, front, and back.”Vertices: 8Edges: 12Faces: 6Tier (shape): A “Ya basic.” Ratio: 0.5951321Clearance: 0.04458268Fun fact: The most famous cube, “ice cube,” is ac-tually an oxymoron since ice water crystals arehexagonal.

Dodecahedron 
Class: PlatonicThe regular dodecahedron is five regular pen-tagons glued together in the only way it can bedone. Its dual is the icosahedron.Vertices: 20Edges: 30Faces: 12Tier (shape): SS “The king of the Platonic solids. Ifyou were thinking that you like the cube better, pleasenote: It has a cube among its vertices!” Ratio: 0.9055370Clearance: 0.009891868Fun fact: In more than one of Bertrand Russell’snightmares,[1][2] the universe is shaped like a do-

decahedron.

Icosahedron 
Class: PlatonicThe icosahedron is more commonly known as theD20. Somehow they managed to fit twenty equilat-eral triangles on this!Vertices: 12Edges: 30Faces: 20Tier (shape): SS Ratio: 0.9166538Clearance: 0.009067620

Octahedron 
Class: PlatonicThe octahedron is neither here nor there, but itdoes deserve some credit for being (along with thetetrahedron) the only solid that survives beyondthe 4th dimension.Vertices: 6Edges: 12Faces: 8Tier (shape): C Ratio: 0.7105124Clearance: 0.04044008Fun fact: The Egyptian “Pyramids” are actually oc-tahedra, with their bottom halves buried beneaththe sand for stability.



Truncated tetrahedron 
Class: ArchimedeanThe secret to the truncated tetrahedron is right inits name: It’s a tetrahedron with the vertices trun-cated into triangles until all of the edges are thesame length again.Vertices: 12Edges: 18Faces: 8Tier (shape): A “Improved safety wrt tetrahedron.” Ratio: 0.7895479Clearance: 0.01159040

Cuboctahedron 
Class: ArchimedeanNot much is known about the cuboctahedron.Vertices: 12Edges: 24Faces: 14Tier (shape): A Ratio: 0.8249954Clearance: 0.01246968Fun fact: Taking the skeleton to be just rigid edgesmeeting at flexible joints, the cuboctahedron canflex into an octahedron.[3]

Truncated cube 
Class: ArchimedeanThe truncated cube just cuts the corners off thecube, such that all the edges are the same length.Vertices: 24Edges: 36Faces: 14Tier (shape): F “Terrible. A worse version of the cube.” Ratio: 0.6363041Clearance: 0.02851421Tier (Rupert): A “Notably chunky residue, which ac-tually leaves entire faces intact!” 

Truncated octahedron 
Class: ArchimedeanThe truncated octahedron improves upon the octa-hedron by replacing its corners with squares.Vertices: 24Edges: 36Faces: 14Tier (shape): B “Wouldn’t you rather have a dodeca-hedron?” Ratio: 0.7934514Clearance: 0.01314258Fun fact: This one can tile space!



Rhombicuboctahedron 
Class: ArchimedeanThe rhombicuboctahedron can be made by explod-ing a cube and connecting the faces, or explodingan octahedron and connecting the faces.Vertices: 24Edges: 48Faces: 26Tier (shape): B “Apleasant meeting of squares and tri-angles, but not particularly inspired.” Ratio: 0.8814010Clearance: 0.01163089

Truncated cuboctahedron 
Class: ArchimedeanKepler named the truncated cuboctahedron, butit’s not a proper truncation (Kepler was notori-ously imprecise). After truncating the cuboctahe-dron you would need to fiddle with the resultingrectangles to turn them into squares.Vertices: 48Edges: 72Faces: 26Tier (shape): C “Hexagons, squares, and octagons?Seems like a victim of design-by-committee.” Ratio: 0.8465262Clearance: 0.006166537

Snub cube 
Class: ArchimedeanThe snub cube is an inspired specimen formedfrom twisting the faces of an exploded cube justright so that everything can be fixed up with equi-lateral triangles. The choice of twist direction yieldstwo chiral “enantiomorphs”. Calling this operationa “snub” does not seem fair to it, although every-one agrees that it makes the polyhedron cuter.Vertices: 24Edges: 60Faces: 38Tier (shape): S Unsolved! Fun fact: Smallest known (to me) polyhedron thatmay be a counterexample to the Rupert conjecture.

Icosidodecahedron 
Class: ArchimedeanThe icosidodecahedron is kind of an icosahedronand a dodecahedron at the same time. It has 12pentagons, like the dodecahedron, and 20 trian-gles, like the icosahedron.Vertices: 30Edges: 60Faces: 32Tier (shape): A “Solid. This one definitely seems likeit should exist.” Ratio: 0.9704011Clearance: 0.0008403132



Truncated dodecahedron 
Class: ArchimedeanYou can make the truncated dodecahedron by ashaving down a nice dodecahedron’s corners intotriangles, wrecking it.Vertices: 60Edges: 90Faces: 32Tier (shape): D “Aworse version of the dodecahedron.” Ratio: 0.9198984Clearance: 0.001588247Fun fact: The edge lengths are all the same here,but since the decagons are massively larger thanthe triangles, there’s a pretty convincing optical il-lusion where the triangle’s edges look shorter.

Truncated icosahedron 
Class: ArchimedeanThe truncated icosahedron is an idealized soccerball, which you can get by slicing off the points ofan icosahedron or straight from the official FIFAstore. It’s made of hexagons and smaller pentagons.Vertices: 60Edges: 90Faces: 32Tier (shape): B Ratio: 0.9561422Clearance: 0.001904887Fun fact: Albrecht Dürer tried to write down all

the Archimedean solids but he forgot this one![4]

Rhombicosidodecahedron 
Class: ArchimedeanThe rhombicosidodecahedron can be made by ex-ploding an icosahedron or dodecahedron and fill-ing in the gaps with squares and either triangles orpentagons, depending on your mood.Vertices: 60Edges: 120Faces: 62Tier (shape): C “Now this is just ridiculous.” Unsolved! 

Truncated icosidodecahedron 
Class: ArchimedeanThe truncated icosidodecahedron appears whenyou cut off the vertices of an icosidodecahedron,getting squares.Vertices: 120Edges: 180Faces: 62Tier (shape): D “Flat and round at the same time. Nothank you.” Ratio: 0.9262423Clearance: 0.001994623



Snub dodecahedron 
Class: ArchimedeanThe snub dodecahedron can be found by explod-ing a dodecahedron, and twisting each of its facesa little bit so that it can be completed with strips ofequilateral triangles.Vertices: 60Edges: 150Faces: 92Tier (shape): B “Constantly in motion. But it’s a bitmuch.” Unsolved! Fun fact: Chiral. When you 3D print these, you ei-ther need to decide which handedness you want,or print both, and then decide how you deal withpairs of chiral polyhedra.

Triakis tetrahedron 
Class: CatalanThe triakis tetrahedron is a tetrahedron whereeach face is augmented by a shallow tetrahedron,such that all the resulting triangles are the same.Vertices: 8Edges: 18Faces: 12Tier (shape): C “The faces are all the same shape, butit is not a good shape.” Ratio: 0.9992249Clearance: 2.073846×10-6 Tier (Rupert): S “Incredible how close this comes to

not making it!” Fun fact: A viable alternative to the dodecahe-dron to use as a D12, with the downside that theface read will be on the bottom. You could fix it inan unambiguious but confusing way by addinga “this end up” marker to pairs of faces sharing along edge. But the dodecahedron is superior un-less you are just trying to be weird.

Rhombic dodecahedron 
Class: CatalanThe rhombic dodecahedron is the dual of thecuboctahedron. Its faces are identical rhombuses.Makes a good alternative D12.Vertices: 14Edges: 24Faces: 12Tier (shape): S “Exceptionally pleasant. Can tilespace.” Ratio: 0.7913643Clearance: 0.02103747Fun fact: Can disguise itself as a cube that's usinga different perspective matrix.

Triakis octahedron 
Class: CatalanNot much is known about the triakis octahedron.Vertices: 14Edges: 36Faces: 24



Ratio: 0.8474944Clearance: 0.02103623

Tetrakis hexahedron 
Class: CatalanThe fancy-sounding tetrakis hexahedron is justa cube with pyramids on each face. A less fancyname is the D24.Vertices: 14Edges: 36Faces: 24Tier (shape): C Ratio: 0.8485281Clearance: 0.009014513

Deltoidal icositetrahedron 
Class: CatalanNot much is known about the deltoidal icositetra-hedron.Vertices: 26Edges: 48Faces: 24Ratio: 0.9292976Clearance: 0.007001024

Disdyakis dodecahedron 
Class: CatalanNot much is known about the disdyakis dodeca-hedron.Vertices: 26Edges: 72Faces: 48Tier (shape): D “Yuck. Has some unreasonably pointyparts that always make me think I got the coordinateswrong, but that’s just how it is.” Ratio: 0.9347240Clearance: 0.003758153

Deltoidal hexecontahedron 
Class: CatalanNot much is known about the deltoidal hexecon-tahedron.Vertices: 62Edges: 120Faces: 60Tier (shape): C “I don’t dislike the kite shape that eachof its sixty faces has, but who needs sixty kites?” Unsolved! 



Pentagonal icositetrahedron 
Class: CatalanThe pentagonal icositetrahedron is made out ofSuperman logos, but no copyright is intended. It ischiral, like its dual, the snub cube.Vertices: 38Edges: 60Faces: 24Tier (shape): B “The faces look a little bit like someonewas trying to draw a pentagon but started drawing ahexagon by accident. It is admirable how they all fit to-gether, but the whole affair is a little bit unsettling.” Ratio: 0.9529842Clearance: 0.0003957848Fun fact: This one is Rupert and it is quite easy tofind a witness to this. This makes it very puzzlingthat its dual, the snub cube, does not seem to besolvable.

Rhombic triacontahedron 
Class: CatalanThe rhombic triacontahedron ought to be betterknown as the D30, a completely satisfying 30-sideddie. It even has faces whose aspect ratio accommo-dates two-digit numbers.Vertices: 32Edges: 60Faces: 30Tier (shape): A Ratio: 0.9068951

Clearance: 0.006184272

Triakis icosahedron 
Class: CatalanNot much is known about the triakis icosahedron.Vertices: 32Edges: 90Faces: 60Ratio: 0.9353803Clearance: 0.001110633Fun fact: If you breed the Pokémon Staryu witha Porygon and give it a dusk stone during a fullmoon, it evolves into a triakis icosahedron.

Pentakis dodecahedron 
Class: CatalanThe pentakis dodecahedron is the dual of a soc-cer ball.Vertices: 32Edges: 90Faces: 60Tier (shape): C “Looks great at first, but then you real-ize that those triangles are not equilateral.” Ratio: 0.9732302Clearance: 0.001730951



Disdyakis triacontahedron 
Class: CatalanThe disdyakis triacontahedron is also known asthe D120. Only extremely advanced Dungeons andDragons players need to roll with such precision.Vertices: 62Edges: 180Faces: 120Tier (shape): C Ratio: 0.9883257Clearance: 0.0006751330Fun fact: This one wins the contest for having themost faces of any P/A/C solid!

Pentagonal hexecontahedron 
Class: CatalanNot much is known about the pentagonal hexe-contahedron.Vertices: 92Edges: 150Faces: 60Unsolved! Fun fact: This is one of the rare P/A/C polyhedrathat is chiral. We can just pick one of the forms forthe Rupert problem, as a solution to one yields asolution for the other by just mirroring.
   

Improvements to BoVeX  

To make my life harder, but also more thrilling, Itypeset this paper in BoVeX, which is a documentpreparation system I wrote as a joke (?) for SIG-BOVIK 2024.[26] You probably already noticed thatI did not implement proper footnotes still. Youalso can tell from the way that the math looks likea child typeset it that I didn’t yet implement anyfancy layout algorithms for that.
I did, however, spend precious vacation days inthe run-up to SIGBOVIK 2025 adding features andfixing other, less important deficiencies of BoVeXso that I can continue my demented quest to useprimarily software written by myself as a joke (?)instead of the perfectly decent mainstream soft-ware that everybody else uses, and whose lives aretherefore presumably not thrilling in this way. Sobegins the Tom 7 SIGBOVIK tradition of listing Bo-VeX improvements:
Unicode.  BoVeX now supports Unicode fonts.I needed this so that I could write π when I wason a digression about sampling quaternions. Thiswas so annoying to implement! PDF was definedduring the era where we were just finally realizingthat our approach to character sets and font encod-ing was unsustainably complicated, and so theytacked on Unicode as a hack on top of that compli-cated mess. So you get all the benefits of the com-plexity of Unicode and all of the benefits of thecomplexity of not Unicode. You actually have tomanage the glyphs yourself, for example, but alsotell PDF how big everything is (but also how bigit might be, just in case it’s inconvenient to actuallyrender it) and you also have to tell it how to de-code the glyphs back into Unicode so that you cansearch or copy-paste from the PDF. Ugh! There area number of undocumented or barely-documentedrequirements, and the symptoms of mistakes arethat Adobe Acrobat will tell you “Unable to opentest.pdf. Please contact the document author.”Um, I contacted myself but nothing happened! Butnow you can just put UTF-8 in your BoVeX sourcecode and it’ll work. Check this out: ДональдТрамп может поцеловать мою задницу!
FixederSys.  Along those same lines, I extendedthe FixederSys font family[27] with a lot more Uni-code characters, like the many exotic mathemati-cal symbols that nobody has ever used. Unicodeis even more inspiring to notation fetishists than



amssymb in this regard. It’s too bad that the math inthis paper is so elementary, or else we could writeA ≽ B ⊯ ⊱∔C ⊶ ∷D⊰ like they do on ΞΔO-UΓΘX 11.
“Robustness”.  BoVeX no longer crashes pro-grams like Adobe Acrobat that expect the PDFs tobe “correct.” LOL!!
List of open problems  

Can we disprove the universal Rupert conjecture,by proving that one of these nice symmetric poly-hedra does not have the property?
Or, can you find a solution to one of these un-solved polyhedra, demonstrating that I am a badprogrammer?
Harder: If the conjecture is false, can we show thatthe snub cube is the polyhedron with the fewestvertices (24) that fails it?
Maybe tractable: Can we prove that polyhedra withdihedral symmetry (extrusions of regular n-gons)are always solvable either because they form “in-correct manhole covers” or “churros”? Where doesthe crossover point occur?
Easier: Can we prove that for some polyhedra (e.g.the regular tetrahedron), any Rupert configurationinvolves a translation (i.e. the projected origins donot coincide)?
Conclusion  

This paper essentially does not advance the stateof human knowledge in any way.
Acknowledgements.  I like to think that the up-setting facts that (a) I am well sick of this projectat this point and (b) I didn’t solve it are due to anunusual (for me) approach I took with it. That is: Italked about it openly with my friends, and evencollaborated. David Renshaw created some excel-lent animations that appear in the accompanyingvideo, and his own soothing music video. He alsofound several bugs in my code, most importantlythat my computed vertices for the disdyakis triacon-tahedron were incorrect! Jason Reed made a “bor-ing, hard video game” version of the problem youcan do in your browser. Tom Lokovic, who sharesmy self-defeating Gen-X distate for modernity,drew upon his 1990s computer graphics wizardry

to work through a few rendering puzzles with me.All of the Brain Geniuses at ThursDz’s and HengeHeads Lunch at a minimum tolerated me repeat-edly talking about polyhedra, and many had sug-gestions as well. However, all of these suggestionswere ultimately fruitless or perhaps even harmful.
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