
Red i removal with artificial retinal networks

Dr. Tom Murphy VII Ph.D.∗

1 April 2015

Abstract

We present a GPU-accelerated means for red i removal
in photographs.

Keywords: computational photography, image processing,

generalized photoshop, artificial retinal networks, types

1 Introduction

When light—such as the bright flashbulb of a camera—
strikes the human eye, it illuminates the retina. Some
of that light bounces back out of the eye, but most of
it stimulates neurons in the retina to produce electrical
signals. These signals stimulate other neurons to which
they are connected, and so on, until the brain (which
is technically part of the eye) perceives an image, as a
two-dimensional array of neurons with different activa-
tion levels. Humans often use these images to sense the
world, for example, in reading research papers.

This research paper concerns a particular feature of
this process, which is that humans are able to view an
image and ignore certain details of it. For example,
Figure 1 contains a printout of an image file of a pho-
tograph of a television displaying a recorded video of
an actor. The video contains a superimposed eye in the
corner, the logo of the network CBS. Most viewers are
not tormented by this everpresent eye staring at them!
In fact, most viewers are able to completely ignore the
eye, and view the scene as though it didn’t contain the
stimulus, even if details such as the actor’s sweatshirt’s
collar pass beneath the stimulus and are occluded by it.

Some stimulus is more everpresent than others. The
Clay Mathematics Institute lists among its unsolved
Millennium Prize problems the “red i removal prob-
lem.” This concerns the removal of stimulus (a red letter
“i”) from images (Figure 2). The problem is particu-

∗Copyright © 2015 the Regents of the Wikiplia Foundation.
Appears in SIGBOVIK 2015 with the increasingly askance visage
of the Association for Computational Heresy; IEEEEEE! press,
Verlag-Verlag volume no. 0x40-2A. 0.00 Australian Neo-Dollars

Figure 1: Q. Who watches the TV watchers? A. CBS’s
all-seeing eye.

larly difficult because the information occluded by the
i is completely gone, and because the authors of papers
about the problem are persistently agitated because it
seems like the letter should be capitalized.

In this paper I show how red i removal can be solved in
certain specialized cases, using an artificial retinal net-
work patterned after the brain contained within the hu-
man eye. Training this artificial retinal network is feasi-
ble on a single powerful desktop machine. Both training
and execution of the model (a mere 400 megabytes) are
GPU accelerated. The model presented in this paper
was trained in about 3 days, and executing it in parallel
on a suite of images takes about 100 milliseconds per
image.1

2 Artificial retinal networks

As I expertly foreshadowed in the previous section, an
artificial retinal network works just like the brain in-
side a human eye. The retina is itself a rectangular
2D array of neurons, which turn photons into IEEE-754
floating point values between 0.0f and 1.0f. Behind this

1Source code is available on the World Wide Web at:
http://sourceforge.net/p/tom7misc/svn/HEAD/tree/trunk/redi

1



Figure 2: An image of an Enigma machine rotor with
a red i superimposed. Solving this instance of the red i
removal problem would mean producing an image with-
out the red i. One way to do this would be to steal a
floppy disk containing an original, unimposed image of
the rotor, from someone in possession of it, for example
the paper’s author.

is another 2D array of exactly the same size, except the
pixels are in a weird jumbled order, and then another
layer. This series of layers is known as the optic nerve.
Finally, the brain perceives the image as an array of
pixels, again of the same size (Figure 3).

It is easy to reconceptualize this process as an array
of pixels undergoing several transformations. Obviously
the story is more complicated: Humans see in color,
so each pixel is actually three different nodes, one for
red, green and blue. In fact, since some scientists hy-
pothesize of certain “superseers”—that is, people who
can perceive more than just the three wavelengths of
light—we actually allow an arbitrary number of nodes
per pixel. In this work, we used N = 4.

In a real human eye, each node is fed inputs from ev-
ery node in the previous layer. For computational effi-
ciency, in this work we allow only 64 inputs to each node
from the previous layer. Because we suspect that lay-
ers are spatially related, a node is always connected to
its neighborhood in the previous layer (each node from
the 9 pixels within Manhattan distance 1). The rest
of the inputs are selected randomly from a Gaussian
distribution, as long as the samples fall within the im-
age (using rejection sampling—the sides and corners do
not “wrap around”). By the way, the images are al-
ways 256x256, because numbers that are a power of two
are faster.2 The connection from one node to another

2This is true on computers, because computers count in binary.

Figure 3: How eyes work, and thus, artificial retinal
networks.

is modulated by a weight, again an IEEE-754 floating
point number. A node outputs the sum of its input val-
ues, passed through a smoothulator, specifically the one
found in Gray’s Anatomy (the book, not the TV show),

1

1 + e−v

This function is biologically plausible.
We learn by backpropagated stochastic gradient de-

scent, like babies do. Specifically: The network is pre-
sented with an image on its retina, and then we run the
floating point values through the layers, summing them
up and applying the smoothulator function, to produce
a final image within the brain. Like a baby, it com-
pares this image to what it expected to see, node by
node. Where each node does not agree with the image,
the error is computed. The baby propagates the par-
tial derivative of the change in error with respect to the
change in stimulus to the previous layer proportional to
its weighted impact; fortunately the smoothulator has
a simple derivative that is easily computed at a point
from its output values. Error is not propagated into the
real world (i.e., by sending light off of the retina back
to the physical object that created the stimulus; that
would be ridiculous).

2.1 Training data

One of the insights of this paper is that although ar-
tificial retinal networks require a lot of data to train,
for certain problems the training data can be easily
generated. For the red i removal problem, we begin
with a corpus of about 4,000 images that were scraped
from Google Image Search. Scraping images is easy;
one just needs to list a bunch of queries for things that
babies would want to view in order to learn what the
world looks like. In this experiment I used terms such
as [snakes], [dog on skateboard], [guitar], [stonehenge]
and [superyacht]. Following this, I manually cleaned

In the human eye, powers of ten are faster, because humans have
ten fingers.



the training data. I deleted images that were not pho-
tographic (drawings, etc.; for example, most images of
guitars are actually 3D rendered cartoon guitars, fan-
tasy images of guitars on fire, the Guitar Hero logo, and
so on) or that were too, uh, pornographic (most queries
for things that can have sex, like tapirs, contain promi-
nent images of the things having sex). These are not
appropriate for babies.

All images are cropped to a square and resized to
256x256. Then we generate training instances: An in-
put image and the expected result. An image that does
not contain a red i should just be transformed into the
image itself (indeed, when we peer directly into the
brain of a baby looking at a TV show, we find a re-
gion of the brain where the TV show is clearly visible).
It is also easy to generate instances of the red i removal
problem along with their solutions—we simply put a red
i randomly on the source image and keep the destination
image unchanged. In this way, we can easily generate a
large amount of training instances (in actual practice,
this procedure had a small bug; see Section 3.1). One
unexpected phenomenon is that I had to be careful to
remove images that already contained a red i, like many
images of casinos, which are often called “CASINO”.

In order to coax networks into recognizing the i, we
also place an i into the 4th color channel in the same
position in the expected output. This is an invisible color
channel which we discard, and which is always zero in
the input. In essence we giving a hint to the eye’s brain
that it should not just remove the red i, but it should
also perceive it. I have not performed enough experi-
ments to know if this is helpful.

For repeatability’s sake, important constants used in
this experiment: There were 2 hidden layers. Gaus-
san samples were produced with a standard deviation
of 16 pixels. The red i was rendered in Comic Sans, at a
height of 80 pixels. I used a variety of learning rates, in-
cluding an expontentially decreasing one (the standard
advice of 0.05 is too large for constant learning rates on
this kind of task, and limits the sharpness of resultant
images).

2.2 CUDA, SHUDA, WUDA

Because we are working with graphical data, we should
use the Graphics Processing Unit of the computer, not
its Central Processing Unit (we are not processing cen-
ters). I implemented high-performance OpenCL kernels
for each phase of training: The forward pass (signals
flowing from the retina to the eye’s brain), the back-
propagation step (when the eye computes the error and
partial derivatives) and the weight update step (when

the eye rewires its neurons so that it sees the right thing
next time). The phases have different parallelism con-
straints. Because the connectivity is sparse, we repre-
sent both forward and inverted index maps, which are
decoded on the GPU. We take care to only load a sin-
gle layer of the retinal network into the GPU’s RAM
at once, to enable very large models, but we run many
training instances in parallel for a single round. Some
other operations, like the preparation of training data,
are performed on the CPU. These are also frequently
done in parallel, using C++11’s new std::thread with
some crazy-ass wrappers to allow them to function in
mingw32’s 64-bit gcc port. On a good day, training
uses all 6 CPU cores and all 2800 GPU cores and about
14 GB of RAM and warms the home office like a 1kW
space heater.

3 Results

After 4 rounds of training, the network produces an
excellent-looking image that could be a Cure album
cover, regardless of the stimulus cast upon its retina
(Figure 4).

Figure 4: Result after 4 rounds of training. Looks great,
and there is no red i to be seen, but it loses some points
for not resembling the input image at all.

It’s not long before the network learns that it should
not produce the same result for every input, and the
output starts to mimic the input. These images look
sort of like the world viewed through frosted glass (Fig-
ure 5), simulating how a baby first learns to see the
world through the 1cm bulletproof Lexan of its translu-
cent BabyLearn incubation cylinder.

Soon thereafter, the network begins to converge on



something like the identity function, as this drastically
reduces error (even if some error is incurred by the
persistence of the red i). Left overnight (about 9,000
rounds), we start to see the network both produce im-
ages much like the original (perhaps through a hip “vin-
tage” Instagram filter), as well as removing the red i
stimulus (Figure 6).

3.1 Evaluation

With a further 30,000 rounds of training, the output im-
ages sharpen and lose their Instagram quality (maybe
only a small amount of “grain”), and the i is still suc-
cessfully removed. However, since we’ve now made
many passes over each image in the training set (and
the model has about 100,000 degrees of freedom), it is
certainly possible that we’ve simply overfit to this set
of images (that is, that the baby’s eye’s brain is simply
memorizing the i-free images and then recalling the one
that looks closest to the stimulus). To evaluate fairly,
we need to apply the model to totally new images that
it was not trained on. These are called “eval” images.

Firing this up, I observed that the model successfully
reproduced eval images that did not contain a red i; this
is good because it means that it is not simply memoriz-
ing the training set images. I then started placing red
i stimulus on the images with the mouse, and my heart
sank: It wasn’t removing the red i at all! Dejected, I
tried loading up the training images and putting a red
i on them—it also did not remove the i, which did not
make sense! Even for babies! Eventually, I discovered
that the red i would be removed, as expected, but only
when the i was in a handful of very specific locations.
This was found to be a bug in the random i placing
code; can you find it too?

uint8 x_dice = seed & 0x255;

seed >>= 8;

uint8 y_dice = seed & 0x255;

As a result, there are only 16 different possible x coor-
dinates, and same for y. Nonetheless, this is still 256 dif-
ferent i locations that work, which implies considerable
generality is possible. Due to Draconian SIGBOVIK
deadlines, I have not yet been able to test a debugged
training procedure.

Once the evaluation code only places an i at expected
locations, the artificial retinal network works well (Fig-
ure 7)!

4 Conclusions

We find that the supposedly impossible red i removal
problem is in fact solvable, at least in some forms, using
artificial retinal networks. There are some limitations
of the current model:

� It has only been tested to remove the letter i when
it is rendered in bright red, in 30 point Comic Sans.

� It probably also removes letters like j, but maybe
also in some other fonts, which is a sword that cuts
both ways.

� Due to a bug, the red i must be at a position whose
coordinates are exactly 〈12 + x0 + 4x1 + 16x2 +
64x3, 12 + y0 + 4y1 + 16y2 + 64y3〉, for xj and yj in
{0, 1}.

� It automatically and non-optionally applies
Instagram-style filters.

This technique can probably be applied to other im-
age processing problems, for example, J peg dequan-
tization. Here, we take an image and badly quantize
it (for example, to 4 bits per color channel), and the
training instance consists of the quantized image as in-
put and the original image as the expected output; the
retinal network learns how to fill in detail. Figure 8
shows the early stages (about 4000 rounds) of training
such a model.

A related, still unsolved problem is “red i reduction”;
here we do simply remove the i but replace it with a
smaller i. For example, we could replace a capital I
with a lowercase one, or replace a lowercase 30pt Comic
Sans i with a lowercase 29pt Comic Sans i. This is an
offshoot of the text ure compression field, which seeks
to make the text “ure” smaller wherever it appears.

Biologically-inspired computer algorithms hold many
wonders for those that seek to tap into the limitless po-
tential of the 85% of the human eye’s brain that is cur-
rently unused. Perhaps humans even contain graphics
processing units!

For higher-fidelity images and source code, please
consult http://tom7.org/redi.



Figure 5: Result after 80 rounds of training, with the
input image at the top and the signal proceeding down-
ward through two hidden layers. The hidden layers as-
pire to crazy noise-terror glitch art versions of the stim-
ulus as well.

Figure 6: After about 9,000 rounds. Top row is the
input image, the second row is the output (no longer
showing hidden layers because they all just look like
firefly raves); the bottom row shows 4x magnified detail
of the region formerly containing the red i. Images are
somewhat desaturated and blurry, but the red i is re-
moved. Note how in the right image, the retinal network
successfully continued both the horizontal and vertical
bookshelves into the occluded region. This is not a trick.



Figure 7: Evaluation on new images after 30,000 rounds
of training. Top row is the input image, the second row
is the output, and third is 4x magnified defail. The
first image (no i) shows the high amount of detail pre-
served. In the latter two, the i is successfully removed;
the quality of the replacement is not perfect, but cer-
tainly reasonable.

Figure 8: Evaluation of an early model for J peg dequan-
tization. The model still contains a lot of noise pixels,
which sometimes take a long time to converge, but it is
already easy to see how quantization artifacts have been
reduced (left). Actually, there is no reason why such de-
quantization must only be applied to J pegs; the right
column shows it working on a nice rainbow picture.


