Modal Types for Mobile Code
(Thesis Proposal) *

Tom Murphy VII
March 13, 2006

Abstract

Modal logic is a family of logics with the ability to simultaneously rea-
son about truth from multiple perspectives. Our previous work showed
how the modal logic Intuitionistic S5 could form the basis for a simple
lambda calculus for spatially distributed programs. I propose here a the-
sis project to demonstrate the efficacy and elegance of modal type systems
for controlling spatially distributed resources in a programming language.
The project has strong components of both theory and practice: the design
of ML5, a new programming language for distributed computing, and its
implementation. I present technical details for the language and imple-
mentation where they have been completed, and a plan for the work to be
done where they have not.

1 Introduction

This research seeks to demonstrate that modal type systems provide an elegant
and practical way to control spatially distributed resources in mobile computer
programs. I propose to do this by designing and implementing a programming
language with a modal type system. I will then demonstrate the language and
implementation’s effectiveness by building an example distributed application
in the language.

The work is part of a larger research program, called ConCert, which is
building a large-scale peer-to-peer “Grid Computing” platform based on certi-
fied code technology. For this proposal, I will begin by describing the current
design of ConCert, which will serve to motivate the thesis work and argue for
my qualifications to undertake the proposed research. I will then demonstrate
how modal types are an appropriate tool for reasoning about spatial distri-
bution, by reviewing a foundational calculus we developed [31, 30] based on
modal logic. Given the problem and an appropriate tool, I then present the de-
sign for a new programming language for distributed computing called ML5.

*The ConCert Project is supported by the National Science Foundation under grant ITR/SY+SI 0121633:
“Language Technology for Trustless Software Dissemination”.

Before going into these items in detail, a high-level summary of each point
should serve to provide the necessary context to understand what follows.

1.1 Overview

ConCert. The ConCert project’s goal is to build a large-scale peer-to-peer
distributed network for trustless Grid computing [11]. Grid computing [18],
which is named by analogy with electric power grids, is the practice of cou-
pling diverse computational resources into a large shared computer. In this
setting, code moves around the network, which presents a security issue: How
does a code consumer know that a piece of code is safe to run? There are sev-
eral functioning Grid computing systems already deployed [17, 3], and each
relies on the establishment of trust relationships between the code producer
and code consumer to address this security issue. In the ConCert system, we
allow for the trustless dissemination of code by using certified code technol-
ogy [32]. To achieve this, each piece of mobile code comes with a certificate
demonstrating the relevant properties of the code. These are intrinsic proper-
ties of the code (e.g., its type safety) rather than the extrinsic properties (e.g.,
who wrote it) sometimes certified by cryptographic signatures.

The implementation of the proposed language, ML5, should also work by
producing safety certificates. I will do this by building a type-directed certify-
ing compiler [27, 35]. This means that the implementation must be carefully
designed (see Section 6), but doing so has many research and engineering ben-
efits.

Grid/ML. Grid/ML [29] is a high-level language that can be used to produce
certified code for use on the ConCert network. It is a functional language based
on Standard ML [24] with primitives for Grid computing. In Grid /ML, the pro-
grammer writes his whole Grid application as a single program. This program
is made of two parts: the client, which runs only on the user’s computer and
interacts with him, and the mobile code, which runs on arbitrary hosts in the
network.

Grid/ML is practical for a certain class of problems, and has been used
for a few Grid programming experiments [12]. However, it has two major
shortcomings. First, the mobile code is agnostic to where it is running, and so
applications must treat the hosts in the network uniformly; it is not possible to
make use of special resources only available at certain sites. Since distributed
computing is often motivated by the desire to make use of resources other than
mere processing power, this rules out an important set of applications.

Second, even with the assumption of uniformity, Grid /ML still has a dis-
tinction between client code and mobile code. Certain operations, such as I/0O,
can only be performed on the client and result in run-time failure if used in
mobile code.

My solution to both problems is to enrich the ML type system with a con-
cept of place. By doing so, the language will be able to support location-aware

programming, so that network locations need not be treated uniformly. As a
consequence, the client will be a place like any other, and we will be able to dis-
tinguish its capabilities from the capabilities of other hosts. Because we use a
type system, we can make these distinctions statically, excluding errors before
the program is ever run.

Modal logic and modal types. Type systems for functional languages like
ML have a close connection to logic, called the Curry-Howard isomorphism.
Under this view, the propositions of intuitionistic logic are interpreted as the
types of a programming language. Proofs of propositions then become pro-
grams inhabiting those types. Different logics, viewed through the lens of the
Curry-Howard isomorphism, give rise to a variety of elegant and useful type
systems for programming languages.

In order to develop a type system with a notion of place, we use a logic with
the ability to reason spatially, namely modal logic [23]. The propositional logic
upon which ML is based is concerned with the truth of propositions from a sin-
gle universal viewpoint. Modal logic introduces the concept of truth from mul-
tiple different perspectives, which are called “worlds.” The logic is then able to
reason simultaneously about truth in these worlds. Under the Curry-Howard
view, these worlds become hosts in the network, and so our type system is
correspondingly endowed with a notion of place.

Distributed programming with modal types. Because a proof in modal logic
contains reasoning from multiple different worlds, programs in our modal pro-
gramming language span multiple hosts. That is, each program consists of a
series of nested expressions to be evaluated at various hosts in the network.
These fragments make reference to the other sites in the network, and the re-
sources particular to those sites. The main purpose of the type system is to
track these references to remote resources so that they are only used in a safe
way: Localized resources can only be used in the correct place. When code or
data do not depend on their location, we are also able to indicate this in the
type system. This allows them to be safely used anywhere. The main result of
type safety of the language is that resources are only used in the correct place.
This brings us to the thesis statement:

Thesis Statement. Modal type systems provide an elegant and
practical way to control spatially distributed resources in mobile
computer programs.

Although modal types naturally address spatial distribution, this is only
one facet of distributed computing. In particular, a logical approach to con-
currency and failure is beyond the scope of this thesis. However, the language
will need to have basic support for these features in order to create a realistic
application.

Implementation. The implementation of ML5 will consist of a type-directed
compiler for the language and a distributed runtime system. The compiler is
responsible for translating the high-level language into certified machine code.
The runtime’s primary task is to form the network of hosts on which the dis-
tributed programs run. To do this, it must be able to marshal code and data
into raw bytes so that they can be transmitted on the network. In order to
ensure safety, the marshalled representation must be accompanied by a cer-
tificate demonstrating its well-formedness. It is the runtime’s responsibility to
verify these certificates upon receipt, relative to the host’s specific set of local
resources. As the marshalled bytes are reconstituted into code and data, refer-
ences to those local resources become linked to them.

The runtime has a few other responsibilities: it performs distributed
garbage collection to reclaim resources, and provides rudimentary support for
failure detection and concurrency (Section 7).

Application. To demonstrate the usefulness of the language and implemen-
tation, I will use it to build an example distributed application. Before choosing
an appropriate application, I will need to have a better idea of how the lan-
guage supports features like concurrency. Thus, this proposal does not commit
to a specific application.

This concludes the high-level summary. The remainder proceeds as fol-
lows: I begin by explaining the proposed work in depth using the same outline
as above (Sections 2-8). For the language design, I give both informal code
examples and formal semantics for a simplified subset of the language. For
the implementation of the compiler, I give formal translations for the core lan-
guage constructs; these translations need only be extended to support a more
full-featured language. For the compiler’s back-end and runtime, I outline the
research problems that still need to be solved. I conclude with a comparison to
other languages for distributed computing (Section 9), and a timeline for the
completion of the thesis work (Section 10).

2 ConCert

The current ConCert system is designed to harness one specific resource: idle
CPU power from a large network of volunteered computers. A program de-
signed to be run on ConCert is broken up into pieces of independent mobile
code (called “cords”) that may run in parallel. To the programmer, ConCert
acts as a single, highly parallel computer with simple primitives for fork-join
parallelism (see below).

A computer becomes part of the ConCert network by running a piece of
software called the Conductor. The Conductor is responsible for maintaining
contact with its peers, and for allocating cords to idle computers in order to
be executed. This allocation is done using a “work-stealing” model: Each host
maintains a queue of cords that are ready to be executed, and when a host is

idle, it “steals” work out of the queues of other hosts. This model is efficient [5],
but because the location in which a cord will eventually run depends on the
idle status of the machines in the network, it is not possible for the program-
mer to know in advance where his code will run. Moreover, to support fault
tolerance (by restarting failed cords), a cord must be able to be run multiple
times in different places and always produce the same result.

As a consequence, we provide cords with a uniform view of the network—
a cord cannot tell what host it is running on, nor can it access any of that host’s
local resources like permanent storage and I/O. This is acceptable because the
only resource ConCert seeks to harness is idle CPU power. In contrast, the
proposed work will allow programs to make use of any sort of distributed
resource.

Adding language support for such local resources is tricky. To illustrate
some of the issues, we look at a simple Grid /ML program.

let
val f
val f2

openfile "numbers.txt"
openfile "factors.txt"

(* append the list | to the output file *)
fun writeresult | =
write(f2, nums-to-string | ~ "\n")

val inputs = readfile f

(* prime factorization of n for n > 0 *)
fun factor n =
let
fun trial 1 = n :: nil
| trial m = if n mod m =0
then factor m @ factor (n div m)
else trial (m - 1)
in
trial (floor (sqrt (real n)))
end

val cords =
map (fn n => submit (fn () => factor n)) inputs

val results = waitall cords
in

app writeresult results
end

This Grid/ML program! computes the prime factorizations of the numbers

IThe example takes the liberty of assuming the existence of some library code, for instance

in the file "numbers.txt" and writes those to the file "factors.txt" (both
files reside on the client). It does this by creating a cord for each factoring task
and submitting them to the local work queue with the primitive submit . The
Grid/ML primitives used have these types:

submit : (unit — «a) — « cord
waitall : o cord list — «a list

A value of type a cord is a running computation that returns a result of
type . Grid/ML allows « to be instantiated with any type. In this case each
jobis anint list cord . After submitting the cords, the program then waits
for them all to complete, and writes the results to the output file.

The file I/ O that the program performs is an effect. Such effects are allowed
only in the part of the Grid /ML program that runs on the client. This is because
I/0 interacts with the external world, and so it depends on the place in which
the code is executed. Therefore, an effect inside cord code would violate the
requirement that it be agnostic about the host on which it runs. In Grid/ML,
such errors are detected only at run-time. For example, if we modify the pro-
gram so that the body of factor tries to write to the file f2 or read from the
file f , then the program will abort at that operation. Although both files are in
scope, the file descriptors do not make sense when executing at remote sites—
even if we wanted to allow I/O in cord code, we would not be able to access
those files once execution has left the client.

This does not necessarily mean that open file descriptors cannot ever leave
the client. Suppose the program is modified to be higher-order:

let
* ... %
fun factor n =
let
* ... %
val factors = trial (floor (sqrt (real n)))
in
(fn () => writeresult factors)
end
* ... %
in
app (fn g => g ()) results
end

Now, instead of returning the list of factors directly, each cord returns a
function that writes the result to the file on the client. The client consumes these
results by calling the functions. (Writing the program this way is gratuitous

nums-to-string and readfile

here, but higher-order mobile code is often genuinely useful!) This program
has the same behavior as the first version. The reference to the local file safely
makes a round trip from the client to the cord code and back in the environment
of each function. Thus it is not the references themselves that we need to tame,
but the way those references to local resources are used. To do this, the type
system of ML5 will associate a place with each value, and then only allow a
value to be consumed in that same place. However, values will be able to flow
freely between places otherwise.

Associating a place with each value does ensure safety, but it can exclude
too many programs; many values are actually portable to every location. We
do not want such values to be unnecessarily restricted to the place where they
are created. For example, in the program above the factor function refers to
the functions sqrt and @ which are defined as part of the standard library on
the client. This is safe because these functions do not use any local resources.
An important feature of the ML5 type system is that it also accounts for values
like these that can be used anywhere. Using these features the ML5 type system
will allow us to statically typecheck both the original program and the higher-
order version.

We have now motivated a type system enhanced with a notion of place.
To summarize, the type system for ML5 will ensure that localized resources
are only used in the correct place by associating with each sub-expression the
place in which it will be evaluated, and associating with each bound variable
the place where it may be used. We will also introduce support for bindings
that are usable in any place, since this is very common. The foundation of this
type system comes from modal logic, which is introduced in the next section.

3 Modal Logic

“Modal logic” refers to a family of logics with the ability to reason about truth
from multiple simultaneous perspectives. For this proposal, we will start with
the specific modal logic called Intuitionistic S5 and then extend it to suit our
purposes. IS5 is most easily understood as an extension of Intuitionistic logic,
whose basic judgment is

't Atrue

where A is a proposition and I' is a collection of hypotheses of the form B true
for various propositions B. The judgment asserts that the proposition A is true,
from a single universal viewpoint, assuming that the hypotheses in I' are also
true.

IS5 changes this judgment by indexing the notion of truth by a collection of
“possible worlds.” These possible worlds are the different perspectives from
which we judge the truth of propositions. All possible worlds must indeed be
possible (they must not admit logical contradictions), but otherwise can dis-
agree on what facts are true. As a real world example, in some possible worlds

the proposition “it is raining in Pittsburgh” is true and in others it is not. How-
ever, in no possible world is “it is raining in Pittsburgh and it is not raining in
Pittsburgh” true. Modal logic gives us the ability to state that a proposition is
true in some specific possible world. The basic judgment in IS5 is:

'+ Atrueew

where A is a proposition as before and w is a world. This judgment asserts
that, assuming the hypotheses in I, the proposition A is true in the world w.
World expressions w include both constants w standing for specific worlds,
and world variables, written w. Truth in IS5 is always with respect to a world.
The context I' therefore consists of assumptions of the form B trueew’.

Most of the rules from intuitionistic logic are imported into IS5, with the
judgment simply changed from true to trueew. For example, we reason about
conjunction as before:

I' Atrueew TI'F Btrueew A ' AN B trueew
I'- AN B trueew '+ Atrueew

NEq

To conclude A A B at the world w, we must conclude both A and B at that same
world. Likewise, if we know A A B at w, then we know A at that same world.

There are also two new connectives, which both use the indexed truth judg-
ment in interesting ways. The first is O (read “box”), where A means that A
is true in all possible worlds. The rules for O are:

I',wworld F A trueew . I' - OA trueew

[m] OE
T+ OA trueew T'F Atrueew’

Because the meaning of O A is that A is true in every world, we may conclude
from OA at some world w the proposition A at any world w’ (rule O E). To
prove that a proposition is true in every world (rule O I), we must prove that
the proposition A is true at a new hypothetical world w about which nothing is
known. This world variable is bound in T".

The other new connective is & (read “diamond”). The proposition A
means that A is true in some possible world. The < connective is defined as
follows:

T+ Atrueew’ o1 ' CAtrueew’ T,wworld, A trueew - C trueew
I'FCAtrueew I'- C trueew

CE

To prove ¢ A at w, we require a proof of A in any world w’ (rule < I). To con-
sume a proof of G A (rule & E), we get to assume the existence of some world
(about which nothing else is known) where A is true, in order to continue prov-
ing some other proposition C. The elimination of &A happens at a different
world (w’) than the remainder of the reasoning (w). In our computational in-
terpretation (Section 4), these worlds will be thought of as hosts in the network,
and so this rule incurs a sort of “action at a distance” by involving two hosts in
the operation. There, we will use a different but equivalent formulation of the
rules that isolates this network communication to a single rule.

The at modality. The O and < connectives are the only new modalities of
Intuitionistic S5. Our first extension to the logic adds a third modality, at. The
proposition A at w means that A is true at the world w; it is a direct internaliza-
tion of the judgment A trueew as a proposition [20, 21]. Such internalizations
are very common. For instance, implication (A D B) in propositional logic is
the internalization of the hypothetical judgment (A true F B true). The rules
defining the connective are:

I' Atrueew’ el ' Aatw trueew
I'F Aatw trueew I' - A trueew’

at E

There are several reasons to extend IS5 with the at modality. One is that it
is a natural and elegant consequence of formalizing IS5 with a world-indexed
truth judgment. Because it directly internalizes the machinery of the proof
system, it will also give us the ability to make more precise statements. In
contrast, J and < are “lossy;” consider the following theorem of IS5:

OADB)DCADOB

The reading of this proposition is as follows: Given that A implies B in every
world, and given that A is true in some world, B is true in some world. This
proposition is true by virtue of the fact that B is true at the same world that A
is true (by using the implication). However, the proposition does not state that
B is true at the same world; in fact, we unable to state such a thing with the O
and < connectives at all. The at modality allows us to make such statements.
Once we introduce propositions that quantify over worlds, we can say

O(ADB)DVw.(Adatw) D (Batw)

which is stronger than the above. In fact, the O and & modalities are definable
in terms of at and quantification, where 0A is Vw.Aat w and ¢Ais Jw.Aat w.
Finally, the precision of the at modality will be necessary in the internals of the
compiler for the purpose of closure conversion (Section 6.4).

Having completed the background discussion of IS5, we are now prepared
to use it as the foundation of the ML5 language, which is presented in the next
section. ML5 will modify the logic in several ways; for comparison, all of the
standard rules are given in Appendix A.

4 The ML5 Language

I'have designed and formalized in Twelf a simple calculus based on the modal
logic from the previous section. (The calculus appears as the internal language
of the implementation in Section 6.2). This calculus forms the basis of ML5,
whose features are toured in this section. However, what is presented here
is only that simple calculus dressed up to make it feel like a programming
language; it is not a complete description of the language. The specification

of ML5 proper is part of the proposed work. Specifically, I do not cover the
features that are treated the same as in SML (e.g. functions, datatypes, tuples).
I also treat issues of concrete syntax loosely.

The language MLS5 is designed around a Curry-Howard interpretation of
Intuitionistic S5. To do this, we associate proof terms with the rules of the
logic. These proof terms become the syntax of the programming language.

Its main typing judgment is

I'M: Aew

which states that the expression M has type A at the world w, in the context I.
As in the logic, each assumption in I" is adorned with the world at which it is
well-typed. Computationally, these worlds are the hosts in the network.

Because every subexpression of the program is typed at some world, an
MLS5 program consists of a tree of nested expressions to be evaluated at differ-
ent hosts. Every variable in the context I' is bound to a value that the program
has access to, and these variables are typed at various different worlds. There-
fore the program is able to manipulate both values that make sense to it (ones
that are typed at the same world) and values that do not (ones that are typed
at different worlds).

The worlds in the typing judgment are the static representations of hosts
in the network. At runtime, we will need tokens with which to refer to these
worlds. A value of type w addr is such a token, which acts as the address of a
host. A host can compute its own address by using the localhost() primitive,
which results in an address value of the form w:

localhost address

I' - localhost() : waddr ew I'-W:waddr ew’

The way an address is used is by switching the location of evaluation to the
world described by the address. This primitive, called get , is ML5’s only
mechanism for moving control and data between hosts.

I' - w’ world
I'M:w addrew
I'FN:Aew

A mobile

get
'k get[w'; M]N : Aew

The get primitive transfers control from the current world w to the specified
world w'. The judgment I' - w’ world checks that the world expression w’ is
well-formed (Figure 2). The expression N, which is well-typed at w’, is eval-
uated there. The resulting value is then returned to w. For an arbitrary value,
this motion is unsound; the value may be, or make use of, a resource that is
local to w’. The final typing condition for get therefore restricts the primitive
to types that are mobile. A mobile type is one whose values are always portable
between worlds (Figure 1). Primitive types such as integers and strings are
mobile. Addresses of worlds are mobile, as are data structures built from other

10

A mobile B mobile

b mobile A x B mobile
0OA mobile <A mobile
a mobile

Amobile A mobile B mobile
. A mobile A+ B mobile

w addr mobile

Figure 1: The definition of the mobile judgment. The metavariable b ranges
over ML base types like int and string . The rule for recursive types po.A
introduces a mobility assumption for the type variable, so mobility is actually a
hypothetical judgment. However, no other type variables are ever considered
mobile

I',wworld, IV = wworld T+ w world

Figure 2: Definition of the judgment I" - w world

mobile types. Abstract types, mutable references, and functions are not mobile,
among other things. Some functions and abstract types may still be moved,
however, by embedding them in the O modality, which is mobile.

Local action. The presence of the get primitive allows us to restrict all other
operations to dynamically involve only one world. In doing so, we will retain
all of the expressive power of the logic.

In the logic, the proposition ¢A meant that A is true at some world. In
the ML5 language, a value of type ¢A is an address for some value of type
A, which lives at an arbitrary unknown world. The rules for < in ML5 are as

follows:
I'FM: Aew

I'+here M : CAew

1

'EM:OAew
I'wworld, a:w addrew, z:Aew + N : Cew

I'Fletd (w,a,z) = M in N : Cew

CE

For both of these primitives, all of the computation happens at the world w.
We may only compute the address of the result of evaluating a local expression
(¢ I). To use something of type ¢ A, we must have it at the current world (< E).
In the body of the letd , we have in scope a hypothetical world w where the
value is, an address a for that world, and the value itself . In comparison,
the rules from Section 3 allowed us to evaluate and take the address of remote

11

expressions, as well as eliminate remote addresses. We can derive those rules
by composing the ML5 rules with get .

In the logic, proposition OA meant that A is true in every world. In MLS5,
a value of type UA is a suspended expression of type A that can be evaluated
anywhere. The rules for the O constructor are also purely local:

T'wworld - M : Aew . T'M:OAew
o
I'Fboxw. M : OAew I'Funbox M : Aew

OE

Although the body of the box is typed at the hypothetical world w (O I), this
construct does not access any remote worlds at runtime. The code inside the
box is suspended, so box w.M is already a value. Unboxing is straightforward
(O E); the suspended expression is evaluated at this time. As before, the remote
version of unbox can be derived by composing this rule with get .

We now have enough to build some small examples, which we will use to
motivate the addition of a new judgment for global reasoning. The following
proposition is one of the characteristic axioms of Intuitionistic S5:

COAD A

As a type it describes a function that when given the address of some sus-
pended portable code of type A we computes a value of type A. In ML5, a
function f of this type is:

fun f (x : OOa) @ a =
letd <w, a, y> = X
in
unbox(get [w;a] y)
end

The function f works by getting the portable code from the world indicated by
the address, and then running it locally.
A different characteristic axiom is problematic:

04 D OOA

In ML5, we might like to write this as follows (supposing we are at the world w):

(* ill-typed *)

fun g (x : Oa) : OO« =
let val a : w addr = localhost()
in box w'. getfw; a] x
end

This code does not type-check. The idea is that we save the address of the local
machine as a. We then create a second box, whose contents is an expression
that get s the original box from the world w. The reason that this does not
type-check is that the variable a is bound at the world w. The get , which

12

happens at the world W’ but tries to use a, is ill-typed. Moreover, we cannot
get the address itself from w, since to do so would require an address for w
at W', which is the very thing we lack! The solution will be to add a new
judgment to classify values that are well-typed at any world. Addresses will
be such values, which will make the above program well-typed with a small
modification. The program also has a second problem: the boxed term that we
create has to contact the home world w every time it is unbox ed. Using the
new judgment we will also be able to create a more efficient implementation of
this function.

41 Validity
To enable global reasoning, we add a new judgment to the language:
'S~ Aew

In this judgment, called the validity judgment, S is a valid expression with type
A at the world w. S will evaluate (at w) to a value that has type A in any
world. Assumptions of the form u~A now appear in I' as well. Since these
assumptions stand for values that are well-typed in any world, they are not
annotated with any world at all. A valid hypothesis can be used at any world:

h
Iu~AT'Fu: Aew P

Valid expressions take on one of the two following forms:

valid expressions S := valuew.v
| mobile M

The typing conditions are as follows:

A mobile
INwworld v : Aew | '-M:Aew »
't valuew.w ~ Aew © T F mobile M ~ Aaw

For value , the argument is already a value, which must be well-typed in any
world. The value is therefore parameterized by a static world w, and checked
for well-typedness in that same world. For mobile , the expression must be
well-typed, and the type of the expression must be mobile. This ensures that
after the expression is evaluated, the result will be well-typed at any world.

The Validity Modality. The valid judgment is internalized to define the cir-
cle modality OA. A value of type OA is a suspended expression that, when
evaluated, produces a value that is well typed anywhere [34]. It is defined as
follows:

T'M:0OAew
TS~ Aaw F,UNAFN:C@W
I‘FcirS:OA@WOI I'letvu=Min N : Cew

OE

13

Because the valid expression is suspended, cir S is a value. At runtime,
the letv construct proceeds by evaluating M to the form cir value v or
cirmobile M, then evaluating M in the latter form, and then binding the re-
sulting value to u for the purpose of evaluating N.

The O modality allows us to type the above attempt at implementing OA D
O0OA:

fun g (x : Oa) : OO« =
letv u ~ w addr = cir (mobile (localhost()))
in
box w'. get[w; u] x
end

In this version, we are able to use the address for w at the world w’ because it is
a global hypothesis. A shortcoming remains: the box produced in this version
must contact the world w every time it is unboxed. An improved version uses
the fact that O« is mobile to create a valid hypothesis v from the argument X,
which can then be used directly at w’:

fun g (x : Oa) : OO0« =
letv v ~ Oa = cir (mobile x)
in
box w'. v
end

The type OA is not mobile, because the suspended expression of type A
is typed with respect to the world where the circle is introduced. A portable
suspended expression that produces a portable value would have type OOA.

A common idiom is to introduce the circle modality and then immediately
eliminate it in order to bind a valid variable. ML5 therefore provides two de-
rived forms:

putvuw=vin N = letvu = cir(valuew.v)in N
putmu =M in N = letvu =cir(mobile M)in N

Polymorphism. Like Standard ML, ML5 supports prenex parametric poly-
morphism over types. It also supports polymorphism over worlds in an anal-
ogous way. We create a new syntactic class of polytypes, and two new forms
of hypothesis that can appear in I':

polytypes P :u= Vai,...,an,wi,...,wn.A
contexts I == ... |z:Pew|z~P

Only assumptions can have polymorphic type. Every use of a polymorphic
assumption must completely instantiate the polymorphic type:

polyhyp
Dyx:(Vag,...,an,wi, ... ,wp.A)ew, TV F

I<A1a <. '7Anawla e 7Wm> : ([Al/ala R An/owm Wl/wlv ey Wm/wm}A)@W

14

Polymorphic variables are introduced by additional polymorphic versions
of theval ,fun ,and letv bindings. For instance, the additional val rule is as
follows:

[, aq type, ..., a, type,wy world, ... w,, world - v : Aew
Lz:(Vay,...,an,wi,...,wpnA)ew - N : Cew

1
I'Flet (aq,...,an;wi,...,w;m)valxz =vin N : Cew h

MLS5 has a value restriction, like SML: A binding can only be polymorphic if
the right hand side is a value. This allows the type inference process to insert
quantifiers without changing the dynamic meaning of the program. This pro-
posal does not include a description of type inference, but I expect it to be a
straightforward extension of the standard algorithm.

The at Modality. A value of type A at w is an encapsulated value, where that
value is well-typed at another world.

I'-M:Aatwew
T'Ev: Aew I'z:Aew' - N : Cew
atl a
I' mholdy v : Aatw ew t TFletaz = Min N : Caw -

E

The leta binding consumes a value of type A at w’ by putting an assumption
r:Aew’ in the context. The value hold, v represents the encapsulation of v.
Its body must be a value because we are not in general at the correct world to
evaluate it; consider the following ill-formed code:
(* ill-typed *)
let val x = hold[w’] (ref 0)
in leta y = x

in

M

end

end

If this code is to be allowed, then within the expression M, y should be bound
to an allocated reference at w'. There has been no opportunity to create such
a reference, however. The static world w' might not even have a dynamic
address available at this point, which would be necessary to make contact with
it.

Dynamically, hold is just a type coercion and leta behaves just like let .

Sums. Sum types, which come from the disjunctive connective in logic, are
not entirely straightforward. Like the elimination form for <, the standard
logical rule for disjunction allows the remote elimination of A v B:

' AV B trueew’
T, Atrueew’ F C trueew
T, B trueew’ - C trueew

'k C trueew

VE

15

In this rule A V B may be at a different world (w’) than our current one (w). So
far, all rules in ML5 other than get have acted solely on local data. We would
like to maintain this, so that (for one thing) existing single-world ML code still
runs without any overhead from the distributed features. The local rules for
sum types in ML5 are:

I'FM:A+ Bew
I'z:Aew F Ny : Cew
I',z:Bew F Ny : Cew

+E
case M of
'k inlz = N; :Cew
| inr £ = N
I'EM: Aew I I'-M: Bew ,
2

I'+inl M : A+ Bew *h I'inr M : A+ Bew

For O and <, the get construct makes the nonlocal logical rules derivable.
This does not work as easily for disjunction, because we cannot get a value of
arbitrary sum type (AV B is only mobile if both A and B are mobile.) However,
the nonlocal case analysis is still derivable in ML5. Here is one way to do it; the

rule
'O :w addr ew

I'-M:A+ Bew'
I'z:Aew' - Ny : Cew
I'z:Bew' - Ny : Cew
case[w’; O] M of
Tk inlz = N; :Cew
| inr z = Ny

+ E-nonlocal

can be implemented as

let
val mr = getfw’; O]
(case M of
inl y => inl (hold[w’] y)
| inr y => inr (hold[w] v))
in
case mr of
inl X => leta x = X
in N1
end
| inr X => leta x = X
in N2
end
end

Here, the type of value that we get is Aatw’ 4+ Batw’, which is guaranteed
to be mobile. Therefore, we retain all of the strength of the logical V connective

16

in IS5. The only downside is that this derivation requires us to enlist the at
modality. The consequence is that the logical completeness relies on the pres-
ence of both V and at, meaning that the two are not truly orthogonal in the
language.

Like in Standard ML, labeled sums will actually be supported (along with
recursive types) as part of the datatype mechanism.

Properties. The language presented here should have two main properties.
First is type safety: Every well-typed program can take a step to another well-
typed program, or is already a value. I have proved type safety in Twelf for
a simplified but representative version of the calculus. Second is a connection
to the logic: the modifications that we have made (particularly the use of get
and locally-acting rules) should not have reduced the expressive power of the
language. We prove for two related lambda calculi [31, 30] that this alternate
formulation proves exactly the same theorems as the standard presentation of
the logic. Both of these proofs have also been formalized in Twelf. Part of the
thesis research will be extending this result to the pure subset of ML5 (with
the O and at modalities) as well.

5 Code Examples

The following small examples illustrate how the constructs of ML5 can be used
to build distributed applications.

Mobile code proxy. Many distributed programming languages provide a
way of forming “proxies” for code that cannot itself move. These proxies can
then be passed around, and used as stand-ins for the functions they mimic.
In MLS5, if the argument and return types of a function are mobile, then one
can create a proxy for it. Here we’ll assume we have a variable f:A — Bew,
and will bind a valid variable u~A — B which is the mobile proxy for that
function. This assumes that A and B are mobile.

putm wOa = localhost()

in putv u w =
(fn a =>
putm v = a
in
get [wO; wOa] (f v)
end)
in
end
end

We begin by computing the address of wy and making it valid, so that we
can contact wo from any world. We then bind u to a function value, which is

17

the proxy. The proxy works by taking the argument (known to be mobile by
assumption) and making it valid as well. The proxy then performs a get to
apply the original function at wy and return the result.

Cords. Assuming some simple facilities for concurrency and the discovery of
idle hosts, we can also emulate the features of Grid/ML in a statically-typed
way. The Grid/ML client will be world h, which is the world that the program
begins running on in ML5. Let’s suppose that the following are bound in the

context:
future:: Type — Type,

future ~ ((unit — «) — a future),
now ~ (« future — a),

find idle ~ (unit — <unit)

We assume Multilisp-like futures, which are a simple mechanism for fork-join
parallelism. An « future is a computation, running concurrently, that pro-
duces a value of type a when synchronized on with now. Futures must allow
the execution of arbitrary ML5 code, but needn’t have any special features for
distribution. We also expect a find _idle routine to give the address of an
idle host, which is represented here as Cunit. All of these primitives are valid
hypotheses, so they can be used in any world.

With this, we can implement a “mobile spawn ” function like the one that is
provided by Grid/ML.

(* spawn ~ Vo, w.(O(a at w) -> (« at w) future) *)
putv (o, w) spawn w2 =
(fn (code : O(a at w)) =>
future (fn () =>
letd <w3, w3a, ()> = find_idle()
in putm ¢ = code
in get[w3; w3a] (unbox c)
end
end))
in

end

This implementation of spawn takes as an argument a piece of suspended code
suitable to run at any world. That suspended code must produce a result that
is well-typed at the world w. The function spawn is polymorphic in w, so this
is the caller’s choice. It then produces a future that finds an idle host and runs
the code there.

The following code shows how spawn could be used from the home
world h:

val f = spawn ¢(h, int)
(box _, .

18

let fun nfactors (n : int) : int = ..
in putm res = nfactors n

in hold[h] res

end
end)

(* ... some computations in parallel ... *)
val answer : int = (leta a = now f in a end)

This program invokes spawn with some “cord” code. That cord computes the
number of factors of some specific n, and coerces the resulting value (an inte-
ger, which is mobile) to the world h. There is no requirement that the result
of the computation be mobile; if we like, it can be specifically tailored to the
world that spawns it. Once we’ve spawned the cord f , we can later wait on its
answer with now. Since it has typeint at h and we are running at h, we can
use leta to unencapsulate the result into a regular integer.

Although this requires more text than using the built-in primitives of
Grid/ML, ML5 has the advantage of superior static checking. The type sys-
tem ensures that the code given to spawn can run anywhere, and ensures that
the result is well-formed at the world h. Unlike Grid/ML, we can also be more
specific about the capabilities of the hosts on which our mobile code will run.
Here we have represented the addresses of hosts as Gunit. If we wanted to
express the idea that machines on the Grid have their own distinct set of ca-
pabilities, we need only amend the implementation of find _idle to return
< caps for some appropriate description of its local capabilities.

Having toured the language’s features and looked at some simple exam-
ples, we now switch gears to a discussion of its implementation.

6 The ML5 Compiler

This section describes the planned implementation of a compiler for ML5. The
early phases of the compiler have been studied in detail. The later phases have
not; part of the thesis work will be to figure out the best course of action for
these and take it.

6.1 Design Issues

Before walking through the phases of the compiler, it is important to recall
some of the issues that will guide the design.

Data Representation. The chief thing that makes the implementation of ML5
different from a standard type-directed compiler for ML is that programs are
able to manipulate data that are typed at different worlds. Because of our local-
only elimination rules, the only way that these data can be used is in prepara-
tion of code or data also intended to be evaluated at other worlds. Therefore,

19

the implementation has considerable flexibility in the way these abstract re-
mote values are represented—the choices can be guided almost entirely by the
marshalling strategy.

Marshalling. Because ML5 programs run on a network, we require the ability
to marshal code and data into raw bytes to be sent over that network. The
compiler will support the runtime in this task by providing marshalling and
unmarshalling functions for each abstract type. (Recall that any ML5 value can
be marshalled, even if the type is not mobile.)

Certification. In order to use ML5 in our trustless Grid computing project,
the compiler must produce certificates that demonstrate the safety of the mo-
bile code. I will do this by building a type-directed compiler that preserves
and translates types throughout the phases of compilation. The compiler will
output typed assembly code for the TALT system [13].

The phases of compilation are as follows. First, the external language (ML5)
is elaborated into a simpler internal language (IL) (Section 6.2). Second, we
convert this IL to continuation passing style (CPS) (Section 6.3). Next, we per-
form closure conversion to implement lexically scoped closures with closed
functions (Section 6.4). Each of these phases is standard [28] apart from the
new features of ML5, so the description concentrates on those.

6.2 Elaboration

The purpose of elaboration is to replace features of convenience in ML5 with
the simpler type theoretic constructs of the IL. For the purpose of this proposal,
those features are the O and ¢ modalities and world polymorphism.

World Quantification. In the IL, type inference is no longer an issue. We
can therefore abandon ML5's restriction to prenex polymorphism, which was
expressed in terms of a syntactic class of “polytypes.” Instead we simply have
the type constructor Vw. A:

Twworld-v: Aew vl I'FM:Vw.Aew
'k Aw.w : Vw.Aew ' M{w):[w/wAew

VE

The IL supports a “type-erasure semantics” [28] where types are purely static
entities, and the term constructors that manipulate them can be erased without
changing the dynamic meaning of the program. To achieve this, the constructor
A is restricted to values. This is all we need for the elaboration of ML5, where
polymorphism is also restricted to values.

The IL also has a first-class existential quantifier, which will be used for

20

closure conversion and the elaboration of <:

' w' world 'k M:3JwAew
F'kFov:|w/wdew I'wworld,z:AF N : Cew

B
It pack[w']vas Jw.A: Jw.Aew I' - unpack M as w,z in N : Cew

JE

The Elaboration Relation. Elaboration is given as a function on ML5 typ-
ing derivations. As a shorthand, we write this as a function on expressions,
[-]4®", parameterized by the current world w and the type A of the expression
being translated? We also give a function that translates ML5 types [-]e. For
the syntactic classes of values and valid expressions, we have have two addi-
tional translations [-]{L®" and []4®". The cases for eliminating the O and <
modalities are:

[OA]e = VYw.((unit — [A]c) atw)

[CA]e = Jw.([A]c at w X w addr)

[oox w’.M]ACY = Aw’.holdw/)\().ﬂM}]f@‘“/

[unbox M]A®W = letax = [M]?4®"(w) in z() end
[here MA@ _ letr— [MJA® in

let a = localhost() in

pack[w](z,a) as Jw.([A]e at w X w addr)
[letd (w,a,x) = M in N]€®¥ = unpack [M]S-®" asw,y in

letx =fstyin

let a = snd y in [N]¢®V

World polymorphism in MLS5 is translated into uses of the Vw quantifier in
the IL. Because polymorphic types are a different syntactic class in ML5, this
requires another translation [-]7 for polytypes.

Vo, ... an,wi,. .. wn A]Y = Voq....,Vap,Vwi,...,Vwn.[A]e
[e(Ar, .. Ap,wi, o, W) JACY = (A (A (W) (W)
[let val (ay,...,an,wi,...,wy)x = v in N]¢@V
= letvalz = Aaj.... Aoy Aws. ... Aw,, [v]:®Y
in [N]EeV

Type Polymorphism. One final phase is needed to eliminate the need for
types at run-time. The program must be able to marshal values of any type,
including the abstract type variables bound by A. I will achieve this by using
dictionary-passing to make available a marshalling and unmarshalling func-
tion for each type variable. This is a standard implementation technique for
type classes [48]. Section 6.5 explains marshalling in more detail.

2In some recursive invocations of the function, we must produce with the type of a subexpres-
sion, where that type is not evident from the expression itself. This is why elaboration works
on typing derivations (where all of the types of subterms are present) rather than directly on the
expressions. In those recursive calls we write _ for the missing type.

21

Properties. Elaboration should be type-preserving in the following sense,
where [I']¢ is the natural extension of [A]e to contexts:

Property 1 (Type soundness of elaboration)
() IfT'+M:Aew (inthe EL)
then [[']e - [M]2®Y : [A]leew (in the IL).
(b) IfT'Fv:Aew (inthe EL)
then [T']c F [v]4®Y : [Alcew (in the IL).
(c) IfT'+S~Aew (inthe EL)
then [T]e F [S]A®Y : [A]cew (in the IL).

This property has been formalized and proved in Twelf for a simplified
external language without polymorphism [25]. o

6.3 Continuation Passing Style

After elaborating into the IL, the goal of the compiler is to repeatedly simplify
the code by removing the use of constructs that have no direct analogue in
machine code. The first such translation serializes the evaluation of expressions
and makes control flow explicit by putting the program in continuation passing
style [4].

Other than the translation of valid expressions and get , CPS conversion is
standard. Figure 3 contains a representative sample of the CPS language (the
dynamic semantics for this fragment are given in Appendix C). A value of type
A cont is a continuation expecting a value of type A. Its canonical form is Az.c.
The type 0A is a new modality that is used to compile the OA modality. A
value of type 0 A is an encapsulated value that is well-typed anywhere. It is an
internalization of the u~A hypothesis just as the at modality is an internaliza-
tion of the 2: Aew hypothesis. The canonical form of type 0 A is cval w.v. The
value W represents an address for the world w. Such values are introduced by
the localhost operation.

We use the judgment

't cew

to type-check CPS expressions, because they do not return (and so they cannot
be distinguished by return type). We use

I'ov: Aew

22

exps c n= letar=winc
letgu=wvinc
liftu=wvinc

letx =fstwvinc

letx =sndv inc

let x = mkpair vy,v2 inc
let = localhost() inc

go[w; vg] ¢
call vy(vg)
halt

values v = (v1,v2)

| holdyw

| Az.c

| Aww

| Aaw

| cvalw.w
|

|

|

|

SRR

= Acont | AxB|Aatw
| DA |Vw.A|Tw.A
|

waddr | ...

types A,B

Figure 3: A representative sample of the CPS language

23

[A— B]c = ([A4]c x ([B]c cont)) cont
[OA]c = (©[A]c) cont cont

Figure 4: Selected cases for the CPS type translation

A cmobile B cmobile

b cmobile A x B cmobile

a cmobile

A cmobile A cmobile B cmobile
pna. A cmobile A+ B cmobile

A cmobile A cmobile
Ya.A cmobile Yw.A cmobile

A cmobile A cmobile
Ja. A cmobile Jw.A cmobile

w addr cmobile

Figure 5: The definition of the cmobile judgment

to type-check values. The interesting typing rules are as follows:

I'+v, :w addrew TI'F cew’ "

'k go[w’;v,] cew

I'Fvg:Acontew I'tFwv,:Aew
Ik callvs(vg)ew

cont E

A cmobile
T'Fov:Aew
I u~AtF cew

I'F1lift w = v incew

lift

Twworld-v: Aew
'k cval ww: DAew

ol

'Fv:oAew T,u~Al cew
I'-1letg u=vincew

O E

In the CPS language, go replaces ML5’s get . The go construct invokes a con-
tinuation at a remote world. In contrast to the IL's get , go is not restricted to
mobile types, because it is only a control-flow construct. The mobility restric-
tion shows up in 1ift, which is also used in the translation of get below.

The call primitive is used to pass a value to a continuation. It simply re-

24

quires that the argument is the same type that the continuation expects, and
that both are typed at the same world. The 1ift construct binds a valid vari-
able to a value whose type is cmobile. The cmobile judgment is analogous to
the mobile judgment from ML5 and its definition appears in Figure 5. The cval
construct, which is the introduction form for the © modality, requires a value.
The typing rule checks that the value is well-typed in any world by checking
it in a fresh hypothetical world. The elimination form, letg, simply binds the
valid variable in the continuation.

There are four translations to convert from the IL to CPS, which translate IL
types, expressions, values, and valid expressions. The translation of IL types
to CPS types is given by a function [-]c. The interesting cases are given in
Figure 4. An important lemma states that this translation preserves our notion
of mobility:

Lemma 1 (Preservation of Mobility)
If A mobile then [A]c cmobile.

Proof is straightforward by induction on the derivation of A mobile. o

The translation of IL terms to CPS terms is given in terms of a higher-order
function convert. It takes as arguments the current world, an IL expression, and
a meta-level continuation to which the result of converting the IL expression is
passed. For example, the translation for tuple construction is as follows:

convert w (My, My) K =
convert w M7 K1
where K1 (vy) =
convert w My Ko
where Kz (v2) =
let x = mkpair v, V2
in K(z)

The translation of IL values is given by a second function, [-]%,, which produces
a CPS value. This is standard; we give only a few cases:

[n]e, = n
[Me.M]¥ = Ayletax=f~fstyin
let k =sndy in
convert w M K
where K v = call k(v)

[cir STy, =[S

The case for cir makes use of the third translation function, [-]%. It takes a
valid expression of type A and the current world, and produces a CPS value of

25

type (©[A]c) cont cont. This function is defined as follows:

[valid w.v]¥
[mobile M|

Ak.call k(cval w.v)
Ak.convert w M K
where K(v) =
lift u=wvin
call k(cval w.u)

We can now give the interesting cases of convert. The elimination form
for O is translated into a use of letg:

convert w (letvu =M in N) K =
convert w M Ky
where Ky (v) = call v(Az.letg u =z in
convert w N K)

The result of converting M (of type OA) is a value of type (9[A]c) cont cont.
We call this continuation with a continuation that unpacks its argument into a
validity variable and proceeds with the translated body of the letv

The other interesting case is the translation of get :

convert w (get[w’; M,|M,.) K =
convert w M, Ky
where Ky (vg) =
let a = localhost in
lift u, = ain
go[w’; vy convert N w' IC,.
where K, (v,.) =
lift u, = v, in

go[w; ua] K(ur)

The translation consists of two uses of go; one to transfer control to the remote
world, and one to come back. We start by evaluating M, to the value v,/, the
address for the remote world. We then compute the local address a, which
will be used to get back. Because we need to use this address from the remote
world, we create a valid hypothesis u, from it with 1ift (addresses are mo-
bile). We then transfer control to the world w’ with go. While in the world
w’, the translation of N is evaluated. Since we want to use the result v, back
at the original world w, it is made into a valid hypothesis using 1ift again.
The typing condition for the IL get construct requires A to be mobile, so by
Lemma 1 the type of this value is cmobile as required. The code then returns
to the world w to continue with the final result.

Properties. The CPS translation should satisfy the following properties,
where [I'] is the natural extension of [A]. to contexts:

26

Property 2 (Type soundness of CPS translation)

() IfTFov:Aew (inthell)
then [T]c F [v]¥, : [A]cew (in CPS).

(b) IfT'FS:Aew (inthell)
then [T']c F [S]% : (©[A]c) cont cont @w (in CPS).

(c) IfT+FM:Aew (inthell)
and for all v such that [T]|c F v : [A]cew, [I]cF K()ew (in CPS)
then [I]c b (convert w M K)ew (in CPS).

This property has been proven and formalized in Twelf for a similar lan-
guage without the validity judgment, O, and © modalities [25]. o

6.4 Closure Conversion

The next important step in compilation is closure conversion. Although low-
level machine languages have the ability to represent higher-order code (by
passing addresses of code), there is no direct support for nesting these code
blocks within one another with lexical scope. Closure conversion implements
lexical scope by constructing an explicit environment for each), so that each
function is actually closed.

Once every function is closed, we can hoist the definitions to the top level,
and refer to them by label rather than variable. In our distributed setting, the
idea is that each label globally identifies a code block, so that we need only to
pass around labels and environments in order to implement mobile code. To
do this, every host must have the code for every label that it might be asked to
execute; one conservative approximation simply gives every host access to all
code in the program.

Closure conversion in this setting is conceptually standard, but is compli-
cated by the presence of valid hypotheses and hypotheses at worlds other than
the current world. For instance, the following (IL) function at world wy has a
free variable at w:

a:wi addrewy, z:int @w; F Ay.y + get[wy;alx : int — intewy

To generate an environment for this function, we need to reify the remote hy-
pothesis as a value. Because it does not make sense here, we do this by using
the at modality.

The destination language of closure conversion is the same as for CPS, ex-
cept for the typing rule for the go construct. For the sake of economy, we reuse
the CPS language and add a new construct go_cc which we use in place of the
old.

The closure conversion algorithm is given by three functions. One converts
CPS types to CPS types. The only types that are affected by the translation are
function (continuation) types. The type of a converted continuation will be an
existential:

[Acont]ec = Feny-Ceny X (([A]ce X Qeny) cont)

27

The other two functions translate CPS expressions and values, respectively. For
the translation of values, only lambdas are affected:?

[Me.clecc = pack (B (Vew, Ap.C'))
as - Qeny X (([AJce X Qeny) cont)
where. ..
d = letx=mypin
lete=m; pin
leta FV(c); = mein
leta FV(c¢),, = mpe in
letgFSV(c); = mpy1ein
letg FSV(¢)y = Tpyme in
[c]ec
Venv — <hOldFVW(c)1 (FV(C)l)7 ey h01dFVW(c)n (FV(C)n),
cval w'.(FSV(e)1),...,cval W' .(FSV(¢)m))
B,, = [FVT(¢)1]eccat FVW(c)1 X ... X [FVT(¢)n]cc at FVW(c), %
O(FSVT(c)1) x ... x O(FSVT(¢)m)
n = Number of free regular variables in c.
FV(c); = Thei'" free regular variable of c.
FVT(c); = The type of the i*! free regular variable of c.
FVW(c); = The world of the i*" free regular variable of c.
m = Number of free valid variables in c.
FSV(c); = Thei*® free valid variable of c.
FSVT(c); = The type of the i'! free valid variable of c.

Note that the translation of \z.c, a value, is also a value. Because we have
lasting restrictions on the bodies of e.g. hold, it is important to preserve the
syntactic classes of values and expressions in these translations.

The translation of expressions only affects call and go:

[call vf(vz)]cc = unpack [vf]cc as (e, p) in
let f=fstpin
lete=sndpin

let a = mkpair[vy]ce, € in

call f(a)

[go[w;va]cfcc = go-ce[w, [va]ec][A--cec

The translation of call is a standard closure call. We unpack the closure, build
the argument to the function (which consists of the original argument along
with the function’s environment) and call it. The translation of go is necessary

3Here we assume the language has n-ary products with projections ;.

28

in order to explicitly represent the continuation as a closure, which is what is
transmitted over the network in the implementation. The typing rule for go_cc
is:

FFog:w addrew T F v 3o Qe X (({) X Q) cont)ew’

go-cc
'k go_cclw’;v,] vp@w

Properties. Closure conversion should admit the following properties:

Property 3 (Soundness of closure conversion)

(@) IfT'Fv:Aew (in CPS)
then [Mee b [v]ce : [A]cc@w (in CPS).

() IfTFcew (inCPS)
then [T)cc b [c]ec@w (in CPS).

(c) IfTFv:Aew (inCPS)
then for every subterm v’ of the form \x.c within [v']cc,
FV(v') = FSV(v') = 0.

(d) IfT'+Fcew (inCPS)
then for every subterm v of the form Ax.c’ within [c]cc,
FV(v) = FSV(v) = 0.

Because of the relative difficulty of formalizing context operations like FV
in Twelf, this proof has only been done on paper. Like Property 2, the proof
was done for a similar language without a validity judgment or © modality.

6.5 Backend

The backend of the compiler transforms the low-level compiled program into
typed assembly language that can be executed by the machine. For the ML5
compiler, I will target the TALT system in active development by Crary et al. at
Carnegie Mellon [13].

I have not yet designed the backend. Vanderwaart’s resource-bounded
Popcorn compiler [44] has a code generator that produces TALT code from a
low-level typed intermediate language. I plan to try to reuse this code with mi-
nor modifications. Even if this turns out to be impossible, generation of typed
assembly language is a solved problem; there are only a few new challenges in
this setting:

Marshalling. ML5 programs must be able to marshal arbitrary code and data
into raw bytes for transmission on the network. By using a dictionary-passing
scheme [48] we can arrange for marshalling and unmarshalling functions to
be available whenever they are needed. Writing these marshalling functions
in a type-safe way will take special care, but the problem has been studied
before [15, 14].

29

Binding to Local Resources. More interesting will be the problem of iden-
tifying and binding to local resources. One of the primary motivations of
the work is the controlled access to local resources (for example, a value
lineprinter : string — unitewsjog). During unmarshalling, code that
makes use of a local resource must have these open references bound to those
local resources. The problem is slightly different from marshalling, because
in general, the host that prepares the marshalled code can only name those
resources—it cannot make sense of them in the same way it can make sense of
common data like tuples and portable code.

I'solved a very similar problem in the Hemlock compiler with an easy ad
hoc solution. Generalizing that technique to this case would mean providing a
uniform table on each host with one entry for every local resource that is used
in the program. The table is initialized by the runtime. On the host where the
resource is present, the table entry contains a tagged reference to the resource,
and accesses to it succeed. Accesses to non-existent resources fail with a run-
time error. Although this scheme would work for the ML5 implementation
as well, it is worth investigating how to avoid this run-time check. However,
note that even if the implementation incurs the cost of a run-time check, the
type system guarantees that such a check will never fail.

Allocation and Valuability. Allocation conversion [28] is a pass that makes
the allocation and initialization of memory explicit. The standard way of allo-
cating the tuple (830, 1), for example, is to generate code such as the following:*

let x = malloc(8, int * int)
let = x[0] := 830
let = x[1] =1

Several constructs in the internal language, such as hold and cval, have a syn-
tactic restriction to values that is necessary for safety. Many values, however,
require allocation. This makes those values into effectful expressions, such that
those programs can no longer be typed in our language! One solution is to re-
lax the value restriction to one of valuability. A “valuable” expression may have
effects, but it can safely be evaluated by one world on behalf of another. I have
only sketched such a system on paper.

By postponing allocation conversion until after translation into a language
like TALT that is not modally typed, we can sidestep this issue completely. Still,
it is interesting to figure out what the right thing to do in this case is, even if I
do not actually implement it.

7 The ML5 Runtime

Related to the backend of the compiler is the language runtime. The runtime is
the software that enables a compiled program to run by mediating between it

4The actual code would be more complicated, mostly due to type systems for initialization, but
that is not at issue here.

30

and the environment. In the case of a distributed programming language, this
includes forming and maintaining the network on which the program runs.

The ML5 runtime will be similar to the ConCert Conductor [29], and I ex-
pect to be able to reuse much of the network code developed for that software.
In many ways it will be simpler, because it does not need to support features
like automatic failure recovery and peer-to-peer node discovery. However,
there are again some special concerns for ML5:

Concurrency. A logical account of concurrency is firmly outside the scope
of this thesis. However, some minimal support for concurrency will likely be
necessary to develop a compelling distributed application. A simple fork/join
mechanism like futures (as used in Section 5) may suffice. Typed CML-style
channels [38] might be easily implementable using the same marshalling mech-
anisms already planned.

Any of these should integrate cleanly with the spatial distribution features
of ML5, the implementation burden being the main cost. The demands of the
application should dictate which features I include.

Garbage Collection. In order to supportlong-running programs, the runtime
must reclaim abandoned storage. The TALT runtime already includes a con-
servative garbage collector for locally allocated data. However, as references
to local data spread (in the environments of mobile code) to other places in the
network, we cannot safely reclaim these data without ensuring that all global
references have been discarded. Distributed garbage collection is a problem
that has been studied, but the solutions are quite complicated [37]. At a mini-
mum, it may be feasible to simply never reclaim data that may have non-local
references. If not, then the most complicated scheme I would attempt would
be very naive, stopping the entire world in order to conduct a scan for data
with no global references.

8 Application

I plan to demonstrate the effectiveness of ML5 and its implementation by build-
ing an example distributed application. The application will be chosen to show
off the features that I have time to implement, so I have not committed to a
specific application yet. Optimally, the application I choose would have the
following characteristics. Most of its complexity should come from the way
it is distributed, not from the particular computations it does at each host. It
should manage location-dependent resources and effects in a non-trivial way,
and should make use of the higher-order programming techniques enabled by
ML5’s type system. Finally, a similar application should have an implementa-
tion in at least one related system, so that the two can be compared.

31

9 Related Work

Distributed computing is a huge area of computer science, suggesting a large
body of related work. Most of this work is only superficially relevant to this
proposal, and the relationship can be summarized in terms of a few major
themes. A few more closely related languages are described in detail below.

A Language, not a Tool. MLS5 is an abstract language designed for spatially
distributed computing on a foundation of logic. In contrast, many systems
used for distributed computing are ad hoc extensions of existing languages. In
many languages used in industry, the mechanisms for distributed computing
are provided in the form of libraries and stub generators (e.g. CORBA [50, 45],
DCOM [7], .Net [33], Web Services [47, 46]).

By building ML5 from first principles, and by using the Curry-Howard Iso-
morphism to guide its design, we are able to isolate key concepts of spatial
distribution and codify them in a natural way within the type system. The
result is a language that is more elegant.

Marshalling and Data Mobility. A common shortcoming of distributed lan-
guages and tools is that they place restrictions on the types of data that can
be marshalled and sent to other hosts. CORBA, whose basic primitive for dis-
tributed programming is the remote procedure call, limits the types of RPC
arguments to a few simple base types. In Java RMI [16], objects matching the
Serializable interface can be marshalled, but this does not include refer-
ences to local resources such as file handles. I contend that this restriction stems
from a mistaken conflation of two separate notions. First is the implementation
technique of marshalling, which is simply a way of representing a piece of data
in a format suitable for transmission on a network. The second is the potential
mobility of data, that is, the fact that some data make sense at more than one
world. In most languages these ideas are conflated because distributed appli-
cations essentially consist of a collection of separate programs, each of which
can only understand data from its own perspective. When a Java program per-
forms a remote procedure call, the function that is called can’t help but require
that all its arguments make sense to it, because the only notion of “making
sense” is one of “making sense locally.” Therefore, every remote procedure
call requires that the arguments shift from making sense to the caller to mak-
ing sense at the receiver. Because this shift always occurs at the same time as
marshalling, they seem like the same operation.

The modal type system of ML5 makes the distinction easy to see, because
it endows programs with the ability to simultaneously reason about the well-
formedness of values from multiple perspectives. An ML5 program may ob-
serve that a value it holds also makes sense at another world, and therefore can
coerce it to a value well-typed at that world. If it then performs a remote pro-
cedure call, it may pass along that value, knowing it makes sense in the called
procedure’s world. A program can also pass along a value that only makes

32

sense to it—in which case the called procedure knows that the value it has re-
ceived is only well-typed at the caller’s world. In either case, marshalling is
simply an implementation technique; any value can be marshalled for trans-
mission, even if it does not make sense on one end of the transaction. This
permits more flexibility in the way programs are written, particularly when
programming with higher-order functions.

The Location of Effects. Another feature of ML5’s modal typing discipline is
that it is able to directly control access to local resources in a statically checked
way. I believe that no other distributed programming language features this
ability. For instance, in Java RMI almost all checks happen dynamically, which
means that more bugs can survive until run-time. These run-time checks in-
clude the dynamic serializability of arguments or return types of methods that
are invoked remotely, as well as any checks that the Java program must make
to ensure that local resources are present when it needs them. For an example
of the latter: when implementing a client/server database system, it is possible
for the client to instantiate a local instance of the server object

Server serv = new Server();
instead of getting a remote instance via RMI

Server serv =
(Server)Naming.lookup('rmi://server.org/dbserv");

Unless special precautions are taken, this compiles and works until the server
code attempts to find the local database on the client computer, which fails.
Similarly, the client can call any public helper code or methods on objects
that are intended for use only by the server. If the programmer wishes to ex-
clude such erroneous programs, it is often possible to use Java mechanisms
like private fields and inner classes to control access to location-dependent
resources. To do so, one must identify the concept of location with the concept
of class membership (the only notion of principal in the language). In contrast,
MLS5 provides a type structure that allows the programmer to directly express
these location dependencies. I claim that this is exactly the relevant concept for
spatially distributed programs.

9.1 Distributed ML-Like Languages

Several lines of research have extended ML-like languages with explicit sup-
port for distributed computing. Some present a very different abstraction of
the network; for instance, D’Caml’s model [49] is a single parallel computer
with a unified store. This model solves the problem of controlling access to lo-
calized resources by making every resource available everywhere through the
automatic creation of proxies. This has the disadvantage of obscuring the per-
formance characteristics of the code, because any read, write, or even copy of a
memory location can require a request over the network. ML5 is lower level in

33

that it attempts to describe the spatial distribution of data with a type structure
rather than abstract away from it.

Acute. Acute [41] is a new ML-like language for distributed computing. The
model it supports is more difficult than ours: a dynamic linking setting where
interacting programs across hosts may be upgraded to different versions while
the program is running. The general mechanism in Acute for controlling lo-
cality is its dynamic rebinding system. This allows the programmer to mark
libraries so that references to them are rebound to local versions when code ar-
rives at a site. In ML5, every variable or label refers to a single binding site, be it
bound in the program or in the initial context that describes the local resources
in the network. This improves the programmer’s ability to reason statically
about programs. On the other hand, dynamic binding is a reality of many
distributed applications. It may be possible to explicitly implement dynamic
binding on top of ML5’s static type system, which would be interesting future
work.

Like several other languages in this category, Acute allows for the mar-
shalling of arbitrary values, and because of the dynamic framework must take
special care to preserve abstraction between distributed modules and module
versions. In comparison, because we check the entire program during a single
static link, we are able to treat abstraction as a high-level issue that is simply
not present when running machine code.

Alice. Alice [39, 1] is a project to build a new SML-like language with many
additional features, including distribution. In Alice, marshalling is called pick-
ling, and the story is similar to Java: Stateful values such as arrays are freshly
copied, and pickling fails at runtime for “sited” values (those that contain site-
specific resources like file handles or thread IDs). As in Java, sitedness is not
evident from the type of a value. Hosts have the ability to publish picklable
values for receipt by other hosts, and to spawn new threads of control. As
usual, there is no typing support of the kind we offer, in fact, “you must be
careful not to use sited values in a service!” [2] or run-time errors may occur.

9.2 Modal Logic in Distributed Computing

Other lines of research have used modal logic (in various forms) for distributed
computing. Borghuis and Feijs’s Modal Type System for Networks [6] provides
a logic and operational semantics® for network tasks with stationary services
and mobile data. They use O, annotated with a location, to represent services.
For example, 0°(A D B) means a function from A to B at the location o. With
no way of internalizing mobility as a proposition, the calculus limits mobile
data to base types. Services are similarly restricted to depth-one arrow types.
By using O for mobile code and < or at for stationary resources, we believe
our resulting calculus is both simpler and more general.

5By way of compilation into shell scripts!

34

Cardelli and Gordon [10] provide an early example of using modal logic for
reasoning about programs spatially, later refined by Caires and Cardelli [8, 9].
They do not take a propositions-as-types view of their logic; instead, they start
from a process calculus, mobile ambients [10], and develop a classical logic for
reasoning about their behaviors. Therefore, their modal logic is very different
from intuitionistic S5 and includes connectives for stating temporal properties,
security properties, and properties of parallel compositions. In contrast, the
proposed work gives a computational interpretation of the logic as a type sys-
tem in the tradition of ML.

Hennessy et al. [19] developed a distributed version of the w-calculus and
impose a complex static type system in order to constrain and describe be-
havior. Similarly, Schmitt and Stefani [40] develop a distributed, higher-order
version of the Join Calculus with a complex behavioral type system. In compar-
ison, our system is much simpler, eliminating the complexities of concurrency,
access control, and related considerations. By basing our system on the Curry-
Howard correspondence, we have a purely logical analysis and, furthermore,
propose a straightforward path for integration into a full-scale functional lan-
guage for realistic programs.

Moody [26] gives a system based on the constructive modal logic S4 due
to Pfenning and Davies [36]. In contrast to our explicit world formalism, this
language is based on judgments A true (here), A poss (somewhere), and A valid
(everywhere). The operational semantics of his system takes the form of a pro-
cess calculus with nondeterminism, concurrency and synchronization; a sig-
nificantly different approach from our sequential model. From the standpoint
of a multiple world semantics, the accessibility relation of 54 satisfies only re-
flexivity and transitivity, not symmetry. From the computational point of view,
accessibility in his work describes process interdependence rather than con-
nections between actual network locations. Programs are therefore somewhat
higher-level and express potential mobility instead of explicit code motion as in
the get construct. In particular, due to the lack of symmetry it is not possible
to go back to a source world after a potentially remote procedure call except by
returning a value.

Jia and Walker [21] give a judgmental account of an explicit world S5-based
logic that is very similar to ours. The main difference is in the envisioned oper-
ational semantics. Theirs is a process calculus admitting “action-at-a-distance,”
where a primitive notion is the passive synchronization of two processes: one
that waits for the value of a label, and one that computes it. In comparison, we
have designed a semantics that we believe is more amenable to standard func-
tional programming style. Our decomposition of the rules for the modalities
means that we have only one primitive that induces communication between
nodes, and it has a simple, active, operational behavior. To our knowledge,
there is no implementation of their calculus as a programming language.

35

10 Conclusion

I have presented a plan for the design and construction of a language for spa-
tially distributed computing. The language is designed from first principles
on a foundation of logic, using the modal logic Intuitionistic S5 for its ability
to represent spatial reasoning. Through its modal type system, ML5 is able to
statically control access to location-sensitive resources. The proposed work is
novel, feasible, and has both theory and practice components. I conclude with
a rough timeline for the completion of the thesis.

Timeline. This project consists of a substantial body of theory (a new lan-
guage design and associated logics), and implementation (a compiler and dis-
tributed runtime). For the purposes of the thesis, these parts may be of vary-
ing quality. For instance, a high-performance ML compiler alone can require
dozens of man-years of work, but is not required to support the thesis. For the
work to be done, I adopt a taxonomy that prioritizes tasks into the following
categories:

e Primary, meaning that this is a central contribution of original work, de-
serving maximal attention

e Secondary, meaning an interesting and original contribution that is not
necessary, but that would strengthen the thesis. Many of these items will
become “future work”

o Tarpit, meaning a notoriously difficult or involved problem, and so I will
only do the bare minimum to make the system usable, leaving the prob-
lem open for “future work”

e Solved, meaning a task that is well-understood and standard, and so
I will do only the bare minimum to make the system usable (or re-use
existing technology)

The following is a plan for completing the proposed work, annotated with
a basic strategy according to the above. Rather than give time estimates, I give
approximate fractions of the total time.

Theory: Language and Logic Design
Complete Twelf proofs and add other types. 6%
Primary. What needs to be done here is to work the va-
lidity judgment through the phases of the formalized
compiler (elaboration, CPS conversion). Since I have
worked these cases out on paper, I do not foresee any
problems. Adding sums and recursive types (etc.) to
the language and proofs will be standard.

36

Network signatures and separate compilation.
Secondary. The language as presented does not provide
a way of specifying the initial configuration of resources
in the network. The language should be extended to
give a way to describe the local resources at other hosts,
and to compile and link against this interface to them.
My recent work on a separate compilation system for
Standard ML [43] should help provide guidance in de-
signing this.

6%?

Implementation: Compiler

Parser, elaboration, CPS, closure conversion.
Primary. 1 can re-use some of the code from Hemlock
(for instance, the pattern matcher) here.

Standard IL Optimizations.

Solved. 1 will spend a small amount of time implement-
ing the optimizations that make the biggest difference
for the least effort (dead code elimination), but this is
only to make the compiler suitable for reasonable appli-
cations.

Optimizations of mobile primitives.

Secondary. It may be important to do special optimiza-
tions for our domain (closure representation, dead and
constant get s, etc.). Time permitting, I would like to
work on this, since it is likely that there is much low-
hanging fruit.

Certifying back-end.

Solved. I would like to re-use Joe Vanderwaart’s popcorn
TALT compiler as the back-end, if possible. Although I
will need to make some changes to support primitives
necessary for ML5-specific features (marshalling), hope
that these will be relatively minor, and that the bulk of
boilerplate code will be taken care of.

19%

2%

2%?

13%

Implementation: Runtime

37

Basic Infrastructure. 13%
Primary. Some basic infrastructure is required to run
ML5 programs. This would allow a program to arrive
on the target machine, be certified, and executed. Al-
though we cannot use the ConCert v2 system for this,
much of that code can be repurposed to build the ML5
runtime. (This runtime is also much simpler, barring
the points below, because it does not need to implement
work-stealing, P2P node discovery, a distributed hash
table, or fault tolerance.) Still, this will be a significant
implementation effort.

Concurrency support. %
Tarpit. Good support for concurrency opens up the sys-

tem to a large number of design and implementation is-

sues which cannot reasonably fit within the time frame,

and which are anyway outside the scope of the thesis.

Some basic concurrency support may however be nec-
essary to write a compelling example application.

Failure tolerance. oe%
Tarpit. We have designed a fault-tolerant network with

the ConCert v2 system. However, the ideas are largely
incompatible here because we support effects; fault tol-
erance would need to be able to log, roll-back, and re-

play effects. While there are some known techniques for

this (such as message logging [22]), they would make

the implementation substantially more complex than it

needs to be to support the thesis.®

Garbage collection. 6%
Tarpit. This is a difficult problem, but a basic solution

will be necessary to make the system usable. I will be-

gin with the simplest possible collector and, when de-
signing the runtime, make sure not to preclude more
advanced collectors should the need for them arise.

Application

6Some very simple support for enabling application authors to handle failure may be possible
by simply raising a handleable exception when a get does not succeed?

38

Application. 6%
Primary. The primary difficulty will be finding an in-
teresting problem to solve that does not require sophis-
ticated concurrency or fault tolerance, since I want to

avoid those.

Dissertation
Writing,. 26%

References

[1] Alice web site, 2005. URL: http://www.ps.uni-sb.de/alice/.

[2] Alice web site: Distribution, 2005. URL:
http:/ /www.ps.uni-sb.de/alice/manual/distribution.html.

[3] David P. Anderson. BOINC: A system for public-resource computing and
storage. In Proceedings of the 5th IEEE/ACM International Workshop on Grid
Computing, Pittsburgh, USA, November 2004.

[4] Andrew Appel. Compiling With Continuations. Cambridge University Press,
Cambridge, 1992.

[5] Robert D. Blumofe and Philip A. Lisiecki. Adaptive and reliable parallel
computing on networks of workstations. In USENIX 1997 Annual Technical
Conference on UNIX and Advanced Computing Systems, pages 133-147, Anaheim,
California, 1997.

[6] Tijn Borghuis and Loe M. G. Feijs. A constructive logic for services and
information flow in computer networks. The Computer Journal, 43(4):274-289,
2000.

[7] D.Box. Understanding COM. Addison-Wesley, Reading, MA, 1997.

[8] Luis Caires and Luca Cardelli. A spatial logic for concurrency (part I). In
Theoretical Aspects of Computer Software (TACS), pages 1-37. Springer-Verlag LNCS
2215, October 2001.

[9] Luis Caires and Luca Cardelli. A spatial logic for concurrency (part II). In
Proceedings of the 13th International Conference on Concurrency Theory (CONCUR),
pages 209-225, Brno, Czech Republic, August 2002. Springer-Verlag LNCS 2421.

[10] Luca Cardelli and Andrew D. Gordon. Anytime, anywhere. modal logics for
mobile ambients. In Proceedings of the 27th Symposium on Principles of Programming
Languages (POPL), pages 365-377. ACM Press, 2000.

[11] B. Chang, K. Crary, M. DeLap, R. Harper, J. Liszka, T. Murphy VII, and
F. Pfenning. Trustless grid computing in ConCert. In M. Parashar, editor, Grid
Computing — Grid 2002 Third International Workshop, pages 112-125, Berlin,
November 2002. Springer-Verlag.

[12] ConCert project home page: Software, 2006. URL:
http://msdn.microsoft.com/netframework/

[13] Karl Crary. Toward a foundational typed assembly language (expanded version).
Technical Report CMU-CS-02-196, Carnegie Mellon University, 2002.

39

[14] Karl Crary, Michael Hicks, and Stephanie Weirich. Safe and flexible dynamic
linking of native code. In 2000 ACM SIGPLAN Workshop on Types in Compilation,
September 2000.

[15] Karl Crary and Stephanie Weirich. Flexible type analysis. In International
Conference on Functional Programming, pages 233-248, 1999.

[16] Jim Farley. Java Distributed Computing. O’Reilly, January 1998.

[17] Tan Foster and Carl Kesselman. The Globus project: a status report. Future
Generation Computer Systems, 15(5-6):607-621, 1999.

[18] Ian Foster and Carl Kesselman, editors. The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann, San Francisco, California, 1999.

[19] Matthew Hennessy, Julian Rathke, and Nobuko Yoshida. SafeDPi: A language for
controlling mobile code. Report 02/2003, Department of Computer Science,
University of Sussex, October 2003.

[20] Hybrid logics bibliography, 2005. URL: http:/ /hylo.loria.fr/content/papers.php.

[21] Limin Jia and David Walker. Modal proofs as distributed programs (extended
abstract). European Symposium on Programming, 2004.

[22] David B. Johnson and Willy Zwaenepoel. Recovery in distributed systems using
optimistic message logging and checkpointing. In Proc. 7th Annual ACM Symp. on
Principles of Distributed Computing, pages 171-181, Toronto (Canada), 1988.

[23] Clarence Irving Lewis. A Survey of Symbolic Logic. University of California Press,
1918.

[24] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of
Standard ML (Revised). MIT Press, Cambridge, Massachusetts, 1997.

[25] Modal types for mobile code: Supplementary twelf source, 2006. URL:
http:/ /tom?7.org/proposal/.

[26] Jonathan Moody. Modal logic as a basis for distributed computation. Technical
Report CMU-CS-03-194, Carnegie Mellon University, October 2003.

[27] Greg Morrisett. Compiling with Types. PhD thesis, Carnegie Mellon University,
December 1995. Available as CMU Technical Report CMU-CS-95-226.

[28] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to
typed assembly language. ACM Transactions on Programming Languages and
Systems, 21(3):527-568, May 1999.

[29] Tom Murphy, VII. Functional grid programming with ConCert, 2004.
Unpublished draft; http://tom7.org/papers/

[30] Tom Murphy, VII, Karl Crary, and Robert Harper. Distributed control flow with
classical modal logic. In Luke Ong, editor, 14th Annual Conference of the European
Association for Computer Science Logic (CSL 2005), Lecture Notes in Computer
Science. Springer, August 2005.

[31] Tom Murphy, VII, Karl Crary, Robert Harper, and Frank Pfenning. A symmetric
modal lambda calculus for distributed computing. In Proceedings of the 19th IEEE
Symposium on Logic in Computer Science (LICS 2004). IEEE Press, July 2004.

[32] George C. Necula. Proof-carrying code. In Proceedings of the 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Langauges (POPL '97),
pages 106-119, Paris, January 1997.

40

[33] .Net web site, 2006. URL: http://msdn.microsoft.com/netframework/

[34] Sungwoo Park. A modal language for the safety of mobile values. Technical
Report CMU-CS-05-124, Carnegie Mellon, Pittsburgh, Pennsylvania, USA, May
2005.

[35] Leaf Petersen. Certifying Compilation for Standard ML in a Type Analysis Framework.
PhD thesis, Carnegie Mellon University, May 2005. Available as CMU Technical
Report CMU-CS-05-135.

[36] Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal logic.
Mathematical Structures in Computer Science, 11:511-540, 2001. Notes to an invited
talk at the Workshop on Intuitionistic Modal Logics and Applications (IMLA’99),
Trento, Italy, July 1999.

[37] David Plainfossé and Marc Shapiro. A survey of distributed collection
techniques. Technical report, BROADCAST, 1994.

[38] John Reppy. Concurrent Programming in ML. Cambridge University Press, 1999.

[39] Andreas Rossberg, Didier Le Botlan, Guido Tack, Thorsten Brunklaus, and Gert
Smolka. Alice Through the Looking Glass, volume 5 of Trends in Functional
Programming. Intellect, Munich, Germany, 2004.

[40] Alan Schmitt and Jean-Bernard Stefani. The M-calculus: A higher-order
distributed process calculus. In Conference Record of the 30th Symposium on
Principles of progr ammming Languages, pages 50-61, New Orleans, Louisiana,
January 2003. ACM Press.

[41] Peter Sewell, James J. Leifer, Keith Wansbrough, Francesco Zappa Nardelli, Mair
Allen-Williams, Pierre Habouzit, and Viktor Vafeiadis. Acute: high-level
programming language design for distributed computation. In International
Conference on Functional Programming (ICFP) 2005, Tallinn, Estonia, September
2005.

[42] Alex Simpson. The Proof Theory and Semantics of Intuitionistic Modal Logic. PhD
thesis, University of Edinburgh, 1994.

[43] David Swasey, Tom Murphy, VII, Karl Crary, and Robert Harper. A separate
compilation extension to Standard ML. Technical Report CMU-CS-06-104,
Carnegie Mellon University, January 2006.

[44] Joseph C. Vanderwaart and Karl Crary. Automated and certified conformance to
responsiveness policies. In Proceedings of the ACM SIGPLAN workshop on types in
language design and implementation (TLDI), 2005.

[45] Steve Vinoski. CORBA: integrating diverse applications within distributed
heterogeneous environments. IEEE Communications Magazine, 14(2), 1997.

[46] W3C Web Service Description Working Group, David Booth and Canyang Kevin
Liu, eds. Web services description language (WSDL) version 2.0 part 0: primer.
Technical Report WD-wsd120-primer-20050510, W3C, URL:
http:/ /www.w3.org/TR/wsdl20-primer, May 2005.

[47] W3C web services working group, 2002. URL: http:/ /www.w3.org/2002/ws/.

[48] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad-hoc. In
Conference Record of the 16th Annual ACM Symposium on Principles of Programming
Languages, pages 60-76. ACM, January 1989.

41

[49] Ken Wakita, Takashi Asano, and Masataka Sassa. D’Caml: A native distributed
ML compiler for heterogeneous environment. In Patrick Amestoy, Philippe
Berger, Michel J. Daydé, Iain S. Duff, Valérie Frayssé, Luc Giraud, and Daniel
Ruiz, editors, Euro-Par 1999 Parallel Processing, 5th International Euro-Par
Conference, volume 1685 of Lecture Notes in Computer Science, pages 914-924.
Springer, 1999.

[50] Zhonghua Yang and Keith Duddy. CORBA: A platform for distributed object
computing (a state-of-the-art report on OMG/CORBA). Operating Systems Review,
30(2):4-31, 1996.

42

A Intuitionistic S5

(a)

T,wworld M : Aew : T'M:0OAew .
m} [m]
T'Fboxw. M :OAew I' - unbox M : Aew
I'- CA trueew’
T Atrueaw’ I',w world, A trueew + C trueew
' CAtrueew ° I'F C trueew oF
[, Atrueew - B trueew o I'FAD Btrueew I'F Atrueew _ .
' AD Btrueew I'+ B trueew
I' Atrueew T F Btrueew . I' AN B trueew A
I' - AA B trueew I' - Atrueew !
I'- AN B trueew AE I'+ Atrueew
I' + B trueew 2 ' AV B trueew

' AV B trueew’
I', Atrueew’ - Cew

T+ B trueew T, B trueew’ - Cew
' AV B trueew e I'F C trueew VE
(b)
I't Atrueew’ el I' Aatwtrueew’ wE
'+ Aatw trueew I' - A trueew

Figure 6: (a) The standard presentation of Intuitionistic S5, as used by e.g. Simp-
son [42]. (b) The extension to add the at modality, as in e.g. Jia and Walker [21]

43

B Internal Language

exps M,N letaz =M in N
v
MN
fst M | snd M
Mw]
unpack M as w,z in N
get[w; M|N
localhost()

letcu=M in N
mkpair(M, N)
mobc M

valid z

(v1,v2)

holdyv

Ax. M

Aw.w

w

0

pack w,v as Jw.A

validexps S

values v

cir §
valid vals z YV W.0
types A, B == AxB|A—B
| VwA|3JwA
| waddr | unit
| OA

Figure 7: The syntax of the Internal Language as formalized in the Twelf code.
In this version, we use a separate syntactic class z for valid values. These are
instantiated at the current world when used as values

For the full static semantics for machine states and the statement of type
safety, see the Twelf code [25].

44

stack frames

f =
}
|
|
|
|
|
|
|

stacks s

get[w; o] M

ret[w] o

oN |vo

ofw]

fst o |sndo
mkpair(o, N) | mkpair(v,o)
letax =o0in N
unpack o asw,z in N
letcu=o0in N
letcmobu =oin N
finish | s f

Figure 8: Stack syntax for the internal language, used to define the dynamic

semantics

<

[hold,

[[<’U1, V2

[Aw.

[pack w, v as Jw.

[

]]MV
HMV

]]MV
I

]]MV
]]MV

~

e

MV

3|

—
N

vv w.holdyv

7 {01, [02]h)

vv ' Aw. [v]w

vv W' .pack w, [v]w as Jw.A
vV W.W

z

Figure 9: Mobilization of values in the internal language. Values of certain
forms can be transformed into valid values; the partial function [-], performs
this mobilization. In each case, the bound world is unused in the body of the

valid value

45

::s;localhost

::s;unpack M as w,x in N

::s <unpack o asw,x in N;
pack w,v as Jw.A

sy fst M

::8;snd M

s < fst o; (vq, v2)

:s < snd o; (1, va)

:s; MN

:s<qo N; .M

s <A Ax.M ojv

:8; M [w]

:s <Qolw]; Aw.v

:s; get[w, M|N

:s <l get[w, o] N; w/

s dret[w'] ojv

::s;mkpair(M, N)

:s <mkpair(o, N);v

:s <mkpair(vy,o); vy

:s;letcu =validzin N

:s;letc u = mobc M in N;

:s<Iletcmobu =oin N;v

:s;letax =M in N

:s<I{letax =oin N;holdyv

1S5 VV W

:finish;v

LS W
s <unpack o asw,z in N; M

§ss3
111
s s

285 [Y] N

ns<fstoy M

s < snd o; M

28501

1185 Vg

ns<to N; M

ns <A .M o; N

5 (] M

s <o[w]; M

a8 [Ylv

s < get|w, o] N; M
s <ret[w]o; N

2285 [u]wy

s <mkpair(o, N); M
18 <mkpair(v,o); N
s (vn, va)

285 [#u] N

s <lletcmobu =o0in N; M
:18; [[[UHMV/U]N
ns<lletaxr=o0in N; M
285 [Y| N

s ("ol

finish;v

$¥zzz¥zzzzzzzzzzzzzzacsz
L A
$$3$$$33333333333333335%

Figure 10: Dynamic semantics for the internal language, given in terms of a
relation — between machine states. A machine state takes the form w::s; M or
w::s; v where w is the current world of evaluation, s is the current stack, and
M is the expression to be evaluated or v the value to be returned. The final rule
steps from a finished machine to itself, which simplifies the statement of type
safety

46

CPS Language

[“u]wlifte’ =o' inec
[“"*/u]whalt
[“*“/ulwgolw’; va] ¢

liftu' = [“Y]wt in [“Y/u]we

halt
go[w'; [““/ulwva] [““fulwe

[““hdwu = [Yhlv
[“fulw = (u# w)
[““fhlwrzc = M.]9"fu]we
[“Yf]we = =
[[WAU/’U,]]WW — W
[“fu]wholdw v’ = holdy [/u]w v’

[[”'”/u]]wcval w'aw' = cval w'.[[w'v/u,]]u'vl

Figure 11: Instantiating substitution for valid variables in the the CPS lan-
guage. This represents one of two ways used to formulate the dynamic se-
mantics for valid variables. (The other, used exclusively in the Twelf formal-
ization, can be seen in the semantics for the Internal Language in Figure 10.)
In this case, the instantiating substitution [“*/,]wc substitutes for the variable
u within ¢, by instantiating the valid value w.v at the worlds where it is used.
The parameter w indicates the current world in the substitution function. Sub-
stitution is also defined over values. Note that the instantiation is purely static;
in an implementation, the same exact value can be used at each occurrence of
u. As usual, we assume the freshness of bound variables in order to avoid cap-
ture; the variable v’ in the case for 1ift, for instance, is assumed to not appear
inv

Property 4 (Type Safety of CPS Language)
(a) If-Fcew (inCPS)

then there exists w', ¢’ such that

w:e— w'c.

If -+cew (in CPS)

and w::c — w'::c

then - + ' ew’.

(b)

47

w:letax = holdyv inc — w:[Y]e
w:letgu =cval w'winc — w::[[‘“,'”/u]]wc

w:liftu=vinc — w[Yu]e

wilet ¢ = fst (vy,v9) inc — w1/]e

w:let © = snd (v1,v9) inc — w2/]e
w::let £ = mkpair vi, v inc — we:[(v1v2)) e

w:let = localhost() inc — wi [V]e

w:go[wy; W1l ¢ — wWiie
w:call (Az.c)(v) — w::[Ysle
w:halt — w:halt

Figure 12: The dynamic semantics for the CPS language. It is given in terms of a
stepping relation — between pairs of CPS machines of the form w::c, where w
is the current world of evaluation and c is the current continuation expression.
We give only the rules for the constructs that appear in Figure 3. The expression
halt has a self-transition for the ease of stating type safety (Property 4)

48

