
Under consideration for publication in J. Functional Programming 1

FUNCTIONAL PEARLS

Programming with Recursion Schemes

Daniel C. Wang
Agere Systems

New Jersey, U.S.A.

(e-mail: dcwang@agere.com)

Tom Murphy VII
Carnegie Mellon

Pittsburgh, U.S.A.
(e-mail: tom7@cs.cmu.edu)

Abstract

Many typed functional languages provide excellent support for defining and manipulating
concrete instances of inductively defined recursive types. However, few of these languages
provide good support for treating these types in a more abstract way. There have been
a number of language extensions proposed to provide abstract facilities for manipulating
these types. Unfortunately none have been widely adopted. We show several programming
idioms based on recursion schemas that provides many of the benefits of several proposed
extensions without any needed language extensions.

By using recursion schemas we can completely hide the representation of an algebraic
type while still fully supporting pattern matching with patterns of arbitrary depth, similar
in many ways to Wadler’s views (Wadler, 1987; Okasaki, 1998). We also can simulate or
encode many features of refinement types (Freeman & Pfenning, 1991; Davies, 1997),
polytypic recursion operators (Meijer et al., 1991), and declarative rewriting.

Our programming idiom is more cumbersome in some areas when compared to the vari-
ous proposed language extensions but provides a good deal of “bang for the buck.” Our ex-
perience demonstrates that these techniques are especially useful for developing compilers
which manipulate various specialized forms of lambda terms. Programming with recursion
schemas gain many of the benefits of views, refinement types, polytypic programming, and
declarative rewriting without the need for any extensions to the underlying language.

1 Introduction

Programming languages that support algebraic data types and pattern matching
provide excellent support for manipulating concrete data structures. However, pat-
tern matching typically requires the full representation of the data type to be ex-
posed to both the programmer and compiler. This disallows data abstraction. Pro-
grammers are burdened with deciding between pattern matching syntax or data
abstraction. Wadler has suggested an extension (Wadler, 1987) that avoids this
tension. There also have been numerous proposed extensions for pattern match-



2 D. C. Wang and T. Murphy VII

signature NAT = sig

type t

val zero : t

val succ : t -> t

val case_nat : t -> {zero:unit -> ’a, succ:t ->’a} ->’a

end

Fig. 1. First attempt at an abstract interface.

ing to achieve similar effects (Aitken & Reppy, 1992; Fähndrich & Boyland, 1997;
Erwig, 1997).

By using recursion schemas we can completely hide the representation of an alge-
braic type and still support pattern matching with patterns of arbitrary depth, sim-
ilar in many ways to Wadler’s views (Wadler, 1987; Okasaki, 1998). We can define
abstract interfaces that simulate some of the features of refinement types (Freeman
& Pfenning, 1991; Davies, 1997). In particular we can define explicit subtypes of
a more general type and provide for zero cost coercions between a subtype and
its supertype. We also can define a parameterized library that provides polytypic
recursion operators (Meijer et al., 1991) for a large class of interesting types. Using
our polytypic recursion operators we show a declarative rewriting idiom. We pro-
vide numerous examples of using our approach as well as some simple benchmarks
to evaluate how our idiom affects the efficiency of programs across several different
ML compilers. We also report our experience in applying a simplified version of our
technique to the TILT compiler (Petersen et al., 2000; Murphy VII, 2002).

Using recursion schemas provides many benefits of several proposed language
extensions by defining the appropriate abstract interface to an inductively defined
algebraic type. For the purposes of discussion we will use Standard ML to present
our examples, but our ideas easily extend to other languages that support algebraic
data types and polymorphism.

To begin we will consider how to implement the following program so that the
inductively define type nat remains abstract

datatype nat = Zero | Succ of nat

fun add (Zero, m) = m

| add (n, Zero) = n

| add (Succ n, Succ m) = Succ(Succ(add(n, m)))

1.1 The Obvious Interface

We wish to make the representation of the nat type abstract. The first interface that
comes to mind is the one in Figure 1. Unfortunately this interface is cumbersome.
We can see why when we rewrite add to use the interface

functor Add(structure N : NAT) = struct



Functional pearls 3

open N

fun add (n,m) =

case_nat n

{zero=fn () => m,

succ=fn n => case_nat m

{zero=fn () => n,

succ=fn m => succ(succ(add(n, m)))}}

end

We lose the benefits of pattern matching and are stuck programming with only
primitive case constructs. Unless we perform some relatively aggressive optimiza-
tions we will be creating as many as four function closures in order to use this
interface. So not only is this interface cumbersome it also potentially introduces
ineffencies.

However, since the type that represents naturals is abstract we can choose either
of these two implementations as a parameter to our module

structure SimpleNat : NAT = struct

datatype t = Zero | Succ of t

val zero = Zero

val succ = Succ

fun case_nat Zero {zero, succ} = zero()

| case_nat (Succ n) {zero, succ} = succ n

end

structure FastNat : NAT = struct

type t = int

val zero = 0

fun succ n = n + 1

fun case_nat 0 {zero, succ} = zero()

| case_nat n {zero, succ} = succ(n-1)

end

We would like the freedom to choose between different representations without
losing the benefits of pattern matching. This problem is quite apparent in the
implementations of typed intermediate languages. To avoid exponential blowup
type based compilers often apply hash-consing, memoization, explicit substitution,
and lazy normalization to the representation of types (Shao, 1998). To hide all these
representation techniques some compilers use a clumsy abstract interface. Figure 2
is an example of such an interface.

1.2 Partial Abstraction

Another interface approach is to only reveal the top-level structure of the the al-
gebraic type and require the use of functions that coerce the concrete top-level
structure into an abstract type. This partial abstraction approach is similar to com-
pilation techniques used to avoid expensive boxing and unboxing coercions when



4 D. C. Wang and T. Murphy VII

(* FLINT tkind is roughly equivalent to the

* following ML datatype

* datatype tkind

* = TK_MONO

* | TK_BOX

* | TK_SEQ of tkind list

* | TK_FUN of tkind list * tkind

*)

(* constructors *)

val tkc_mono : tkind

val tkc_box : tkind

val tkc_seq : tkind list -> tkind

val tkc_fun : tkind list * tkind -> tkind

(* deconstructors *)

val tkd_mono : tkind -> unit

val tkd_box : tkind -> unit

val tkd_seq : tkind -> tkind list

val tkd_fun : tkind -> tkind list * tkind

(* predicates *)

val tkp_mono : tkind -> bool

val tkp_box : tkind -> bool

val tkp_seq : tkind -> bool

val tkp_fun : tkind -> bool

(* one-arm switch *)

val tkw_mono : tkind * (unit -> ’a) * (tkind -> ’a) -> ’a

val tkw_box : tkind * (unit -> ’a) * (tkind -> ’a) -> ’a

val tkw_seq : tkind * (tkind list -> ’a) * (tkind -> ’a) -> ’a

val tkw_fun : tkind * (tkind list * tkind -> ’a) * (tkind -> ’a) -> ’a

Fig. 2. Abstract interface found in a type based compiler
.

compiling polymorphic values (Shao, 1997). This partial abstraction technique has
been used as an interface in an experimental version of the TILT compiler (Murphy
VII, 2002).

Figure 3 contains an interface for natural numbers that uses partial abstraction.
Figure 3 replaces several functions with a concrete top-level type (s) and two func-
tions (inj and prj). Notice that the type s is structurally the same as the original
datatype nat definition except all the recursive occurrences of the type nat are
replaced by the type t. As a convention we use all uppercase constructor names for
the concrete top-level type that hides an abstract type to avoid confusing them with
normal constructors from inductively defined types. The inj and prj functions are
similar to the standard coercion operators seen in isorecursive (Pierce, 2002) for-



Functional pearls 5

signature NAT = sig

type t

datatype s = ZERO | SUCC of t

val inj : s -> t

val prj : t -> s

end

Fig. 3. Partially abstract interface.

mulations of recursive types. It requires a little work to get used to inserting them
in programs but this becomes second nature with practice.

The following program is our Add example reworked with the partially abstract
interface in Figure 3

functor Add(structure N : NAT) = struct

open N

fun add (n, m) =

case (prj n, prj m) of

(ZERO, m) => inj m

| (n, ZERO) => inj n

| (SUCC n, SUCC m) => inj(SUCC(inj(SUCC(add(n, m)))))

end

Since our language is impure there is nothing preventing either inj or prj from
causing arbitrary side effects. With explicit coercions the location of any possible
effects are clear. The issue of when coercion related effects occur requires some
thought when when adapting Wadler’s proposal for views (Wadler, 1987) to eager
languages such as ML (Okasaki, 1998). Regardless of these issues we can now use the
standard pattern matching primitives to match against the constructors declared
by s.

Below are two modules that implement the new NAT interface

structure SimpleNat : NAT = struct

datatype s = ZERO | SUCC of s

type t = s

fun inj x = x

fun prj x = x

end

structure FastNat : NAT = struct

type t = int

datatype s = ZERO | SUCC of t

fun inj ZERO = 0

| inj (SUCC n) = n + 1

fun prj 0 = ZERO

| prj n = SUCC (n - 1)



6 D. C. Wang and T. Murphy VII

end

The partially-abstract interface in Figure 3 is quite useful but not as widely used
as it could be. However, it still is not as general as we would like. Consider the
program below which uses nested patterns.

val one = Succ(Zero)

fun fib Zero = one

| fib (Succ Zero) = one

| fib (Succ (Succ n)) = add(fib n,fib (Succ n))

Using our partially abstract interface requires us to rewrite our program as

functor Fib(structure N : NAT

val add : N.t * N.t -> N.t) = struct

open N

val one = inj (SUCC (inj ZERO))

fun fib n =

case prj n of

ZERO => one

| SUCC n => (case prj n of

ZERO => one

| SUCC n => add (fib n, fib(inj(SUCC n))))

end

This is unfortunate, since we are stuck programming with primitive case statements.
We can generalize the partially abstract approach to allow us to program with
arbitrarily nested patterns, as well as providing the benefits of refined types, generic
recursion operators, and declarative rewriting.

2 Using Recursion Schemes

The key idea of our technique relies on the well known metatheory for algebraic
types. Meijer, Fokkinga, and Paterson (Meijer et al., 1991) present a good summary
of the ideas. Their metatheory is a useful guide to understanding the generality of
our technique. However, we wish to emphasize programming pragmatics and not
metatheory. So we will continue to develop our technique through several illustrative
examples, without directly referring to the metatheory.

Let us rework the previous interface NAT using a more general approach. Figure
4 contains a NAT interface that generalizes our previous interface that used partial
abstraction. In Figure 4 we have simply replaced the type s with a polymorphic
type constructor. The type constructor ’a F is the same as the original datatype s

definition except all the occurrences of the type s are replaced by the type variable
’a. The type constructor ’a F is a recursion schema that characterizes the pattern
of recursion.

We modify the types of the inj and prj functions appropriately. Below are two
modules that implement the new NAT interface



Functional pearls 7

signature NAT = sig

type t

datatype ’a F = ZERO | SUCC of ’a

val inj : t F -> t

val prj : t -> t F

end

Fig. 4. Interface using recursion schemas.

structure SimpleNat : NAT = struct

datatype ’a F = ZERO | SUCC of ’a

datatype t = Fix of t F

fun inj x = Fix x

fun prj (Fix x) = x

end

structure FastNat : NAT = struct

datatype ’a F = ZERO | SUCC of ’a

type t = int

fun inj ZERO = 0

| inj (SUCC n) = n + 1

fun prj 0 = ZERO

| prj n = (SUCC (n - 1))

end

Unlike our previous interface the inj and prj functions for SimpleNat are non-
trivial and must wrap and unwrap an extra constructor we have introduced to tie the
recursive knot. A optimizing compiler should be able to use the same representation
as the more obvious concrete representation. The representation we have chosen for
naturals in SimpleNat is a two-level type, since we have split the inductively defined
type into two distinct levels. The first ’a F represents the structure while t ties the
recursive knot. Two-level types have been used in other situations to abstract the
structure of inductively defined types in order to build generic algorithms that are
independent of the structure (Sheard, 2001).

2.1 Handling Nested Patterns

We can handle nested patterns by defining two helper functions inj2 and prj2.
These work just like our inj and prj operators except they work with patterns
that are two deep. The type of inj2 is t F F -> t. The type of prj2 is t -> t F

F.

functor Fib(structure N : NAT

val add : N.t * N.t -> N.t) = struct

open N

fun inj2 n = inj (case n of



8 D. C. Wang and T. Murphy VII

ZERO => ZERO

| SUCC n => SUCC(inj n))

fun prj2 n = case prj n of

ZERO => ZERO

| SUCC n => SUCC(prj n)

val one = inj2 (SUCC ZERO)

fun fib n = case prj2 n of

ZERO => one

| SUCC ZERO => one

| SUCC (SUCC n) => add (fib n, fib (inj (SUCC n)))

end

We can easily predefine a family of injn and prjn functions for as deep as necessary
by defining the following utility modules

functor Injs(structure N : NAT) = struct

open N

fun inj_succ inj_pred n = inj (case n of

ZERO => ZERO

| SUCC n => SUCC(inj_pred n))

val inj1 = inj

val inj2 = inj_succ inj1

val inj3 = inj_succ inj2

val inj4 = inj_succ inj3

val inj5 = inj_succ inj4

end

functor Prjs(structure N : NAT) = struct

open N

fun prj_succ prj_pred n = case prj n of

ZERO => ZERO

| SUCC n => SUCC(prj_pred n)

val prj1 = prj

val prj2 = prj_succ prj1

val prj3 = prj_succ prj2

val prj4 = prj_succ prj3

val prj5 = prj_succ prj4

end

Notice how the inj succ and prj succ functions build functions that work at a
deeper level by reusing functions that work on a shallower level. Later we will show
how to define prj succ and inj succ in a generic way that will allow us to build
Injs and Prjs modules that work for a large family of types.

Also note that our prj n will eagerly apply coercions that may be necessary.
Wadler’s original view proposal lazily applies the needed coercions. If programmers



Functional pearls 9

want to lazily apply coercions they must transform the nested matches in to a
sequence of primitive matches. We consider this a deficiency of our approach.

2.2 Avoiding Representation Coercions

Now that we have a reasonable interface that allows us to use pattern matching
syntax while hiding the representation, we can use our new abstraction facilities to
enforce static invariants without paying expensive penalties.

Suppose that we wish to distinguish between odd and even natural numbers. The
following definitions are what we would be forced to use without data abstraction
techniques

datatype nat = Zero | Succ of nat

and even = EvenZero | EvenSucc of odd

and odd = OddSucc of even

fun evenToNat EvenZero = Zero

| evenToNat (EvenSucc odd) = Succ(oddToNat odd)

and oddToNat (OddSucc even) = evenToNat even

Refinement types (Freeman & Pfenning, 1991; Davies, 1997) provide a convenient
extension to the type system of ML that allows us to express the relationships above
in a more abstract way

datatype nat = Zero | Succ of nat

datasort even = Zero | Succ of odd

and odd = Succ of even

Here the datasort declaration introduces new constraints that the type checker
uses to verify that the values declared as odd or even hold to the invariants imposed
by the data refinement. Refinement-type systems have powerful type inference sys-
tems as well as extending the normal type systems with intersection types to give
the programmer a very rich set of constraints they can specify and enforce. Un-
fortunately, refinement types have not been widely adopted in any programming
language.

Refinement types avoid the need for representation coercion functions such as
evenToNat and oddToNat which traverse the entire structure to coerce values of
type even and odd to values of type nat. In a refinement-type system values with
the sort even and odd are simply nat values that the compiler has statically verified
to conform to extra sort constraints placed on it by the datasort declaration.

Rather than relying on refinement types we can express many of the constraints
with the interface in Figure 5. Here is a generic implementation of the interface
that is parameterized by the underlying type of natural numbers

functor RefineNat(structure N : NAT) : NATS = struct

open N

type nat = N.t



10 D. C. Wang and T. Murphy VII

signature NATS = sig

include NAT

type nat = t

type even

type odd

structure Even : sig

datatype ’a F = ZERO | SUCC of ’a

val inj : odd F -> even

val prj : even -> odd F

val toNat : even -> nat

end

structure Odd : sig

datatype ’a F = SUCC of ’a

val inj : even F -> odd

val prj : odd -> even F

val toNat : odd -> nat

end

val addOddOdd : (odd * odd) -> even

val addEvenEven : (even * even) -> even

val addOddEven : (odd * even) -> odd

val addEvenOdd : (even * odd) -> odd

end

Fig. 5. An interface for both odd and even natural numbers.

type even = N.t

type odd = N.t

structure Even = struct

datatype ’a F = ZERO | SUCC of ’a

fun inj ZERO = N.inj (N.ZERO)

| inj (SUCC n) = N.inj (N.SUCC n)

fun prj n = case N.prj n of

N.ZERO => ZERO

| N.SUCC n => SUCC n

fun toNat n = n

end

structure Odd = struct

datatype ’a F = SUCC of ’a



Functional pearls 11

fun inj (SUCC n) = N.inj (N.SUCC n)

fun prj n = case N.prj n of

N.ZERO => raise (Fail "impossible")

| N.SUCC n => SUCC n

fun toNat n = n

end

fun add (n, m) =

case (prj n, prj m) of

(ZERO, m) => inj m

| (n, ZERO) => inj n

| (SUCC n, SUCC m) => inj(SUCC(inj(SUCC(add(n, m)))))

val addOddOdd = add

val addEvenEven = add

val addOddEven = add

val addEvenOdd = add

end

Notice that the toNat functions are the identity. Unlike a refinement-type system
we have to trust the correctness of the code and the interface above. In particular
the properties of our four different variants of the addition function are assumed
to be correct. Systems with refinement types are able to verify that our addition
function actually has the properties enumerated in the interface. However, a bug in
our reasoning or code will only result in an unexpected exception being raised and
not compromise the type safety of the system. Also, if an unexpected exception is
raised the abstraction guarantees help us isolate the bug to a particular module.

At first glance this extra flexibility may seem a bit needless, but in practice this
style of programming is especially useful for dealing with various lambda calculi
used in compilers for functional programming languages. Typically the compiler
deals with many refinements of an underlying calculus. This is done by duplicating
types and constructors. It also requires that we duplicate a great deal of infrastruc-
ture which should be reusable in an ideal world. We provide a detailed example of
representing ANF and CPS terms uniformly as general lambda terms as an Ap-
pendix.

2.3 Recursion Operators

It is quite useful to define generic recursion operators for our type. Figure 6 are
typical interfaces for the recursion operators fold and unfold. Below is a simple
module that demonstrates the use of the operators in Figure 6.

functor Convert(structure Rec : NAT_REC) : sig

structure N : NAT

val toInt : N.t -> int

val fromInt : int -> N.t



12 D. C. Wang and T. Murphy VII

signature NAT_REC = sig

structure N : NAT

val fold : {succ:’a -> ’a, zero:unit -> ’a} -> N.t -> ’a

datatype (’a,’b) sum = L of ’a | R of ’b

type ’a gen = ’a -> (’a, unit) sum

val unfold : ’a gen -> ’a -> N.t

end

Fig. 6. Traditional recursion operators for natural numbers.

end = struct

open Rec

fun toInt n = fold {zero=fn () => 0, succ=fn i => i + 1} n

fun fromInt i =

if i < 0 then raise (Fail "not a nat")

else unfold (fn 0 => R () | n => L (i - 1)) i

end

The function toInt defines a function that inductively deconstructs natural num-
bers and builds an integer representation of the number. The function fromInt

defines a function that inductively constructs a natural number from an integer
representation of the number. Below is a straightforward implementation of the
operators fold and unfold.

functor NatRec(structure N : NAT) : NAT_REC = struct

structure N = N

open N

fun fold {succ, zero} n = let

fun f ZERO = zero ()

| f (SUCC n) = succ (f (prj n))

in f (prj n)

end

datatype (’a,’b) sum = L of ’a | R of ’b

type ’a gen = ’a -> (’a, unit) sum

fun unfold gen init = let

fun g (R ()) = ZERO

| g (L x) = SUCC (inj (g (gen x)))

in inj (g (gen init))

end

end

Unfortunately the interface in Figure 6 is a little confusing. The interface to
unfold in particular is confusing to someone not already familiar with unfold. The



Functional pearls 13

signature NAT_REC = sig

structure N : NAT

val fold : (’a N.F -> ’a) -> N.t -> ’a

val unfold : (’a -> ’a N.F) -> ’a -> N.t

end

Fig. 7. Using recursion schemas for recursions operators.

relationship between folds and unfolds is completely lost by this interface. Recursion
schemas allow us to clean up the interfaces and implementations of the operators.

Figure 7 is an alternative definition that uses recursion schemas. Here is a use of
the interface in Figure 7.

functor Convert(structure Rec : NAT_REC) : sig

structure N : NAT

val toInt : N.t -> int

val fromInt : int -> N.t

end = struct

open Rec

fun toInt n = fold (fn N.ZERO => 0

| N.SUCC n => n + 1) n

fun fromInt i =

if i < 0 then raise (Fail "not a nat")

else unfold (fn 0 => N.ZERO

| i => N.SUCC (i - 1)) i

end

Here is an implementation of the recursion operators

functor NatRec(structure N : NAT) : NAT_REC =

struct

structure N = N

open N

fun fold step n = let

fun f ZERO = step ZERO

| f (SUCC n) = step (SUCC (f (prj n)))

in f (prj n)

end

fun unfold gen init = let

fun g ZERO = ZERO

| g (SUCC x) = SUCC (inj (g (gen x)))

in inj (g (gen init))

end

end



14 D. C. Wang and T. Murphy VII

signature TYP = sig

type t

type ’a F

val Fmap : (’a -> ’b) -> ’a F -> ’b F

val inj : t F -> t

val prj : t -> t F

end

Fmap (fn x => x) ≡ (fn x => x)

Fmap (f o g) ≡ (Fmap f) o (Fmap g)

Fig. 8. Categorical interface to recursive types.

Our new definitions for fold and unfold are uniform and simpler. These defini-
tions have more than an esthetic value. Next we will show how to write an entire
family of generic fold and unfold functions that are independent of the underlying
structure of the type.

3 Polytypic Functions

The metatheory for defining fold and unfold for arbitrary recursive types begins
by representing the type as a categorical functor. A categorical functor acts on
both types and values. In particular the constructor ’a F is a function from types
to types and represents the type portion of the functor that defines the underlying
recursive type. Once we flesh out our interface to include a function Fmap that acts
on values, we will have fully specified a functor and can use the constructions in
Meijer, Fokkinga, et al. (Meijer et al., 1991) to specify fold and unfold in a generic
way.

The interface in Figure 8 describes the typing constraints and semantic con-
straints need for our categorical representation of recursive types.

There are several semantic constraints that must be imposed on the various
operations for the derivations in Meijer, Fokkinga, et al. to hold. One semantic
constraint placed on Fmap is that it is “structure preserving,” i.e. the equations
in Figure 8 must hold. These implicit semantic constraints must be assumed to
hold for our constructions to be sensible. Below is a generic interface for recursion
operators based on the categorical interface.

signature REC = sig

structure T : TYP

val fold : (’a T.F -> ’a) -> T.t -> ’a

val unfold : (’a -> ’a T.F) -> ’a -> T.t

end

The definitions for fold and unfold operators based on our interface and the
equations presented in Meijer et al. are as follows:

functor Rec(structure T : TYP) : REC = struct



Functional pearls 15

structure T = T

open T

fun wrapF f g h x = f (Fmap h (g x))

fun fold step x = wrapF step prj (fold step) x

fun unfold gen y = wrapF inj gen (unfold gen) y

end

Notice that we do not have to examine the concrete structure of our type to define
the operators. The structure of our type is implicitly encoded in the behavior of
Fmap. Here is a simple example usage of this generic module.

functor NatRec(structure N : NAT) : NAT_REC =

struct

structure N = N

structure T =

struct

type t = N.t

type ’a F = ’a N.F

val inj = N.inj

val prj = N.prj

fun Fmap f N.ZERO = N.ZERO

| Fmap f (N.SUCC x) = N.SUCC(f x)

end

structure Rec = Rec(structure T = T)

open Rec

end

Notice that the defined Fmap is a structure preserving function. This is a critical
property needed for the construction to hold.

The Fmap function we’ve define has other important uses. We can use it to express
inj succ and prj succ in terms of Fmap also. So our modules Injs and Prjs

become generic.

functor Injs(structure T : TYP) = struct

open T

fun inj_succ inj_pred x = inj (Fmap inj_pred x)

val inj1 = inj

val inj2 = inj_succ inj1

val inj3 = inj_succ inj2

val inj4 = inj_succ inj3

val inj5 = inj_succ inj4

end

functor Prjs(structure T : TYP) =

struct

open T

fun prj_succ prj_pred x = Fmap prj_pred (prj x)



16 D. C. Wang and T. Murphy VII

val prj1 = prj

val prj2 = prj_succ prj1

val prj3 = prj_succ prj2

val prj4 = prj_succ prj3

val prj5 = prj_succ prj4

end

It is useful to collect all these functions into one reusable module with the fol-
lowing interface:

signature AUX_DEFS = sig

structure T : TYP

val inj1 : T.t T.F -> T.t

val inj2 : T.t T.F T.F -> T.t

val inj3 : T.t T.F T.F T.F -> T.t

val inj4 : T.t T.F T.F T.F T.F -> T.t

val inj5 : T.t T.F T.F T.F T.F T.F -> T.t

val inj_succ : (’a -> T.t) -> ’a T.F -> T.t

val prj1 : T.t -> T.t T.F

val prj2 : T.t -> T.t T.F T.F

val prj3 : T.t -> T.t T.F T.F T.F

val prj4 : T.t -> T.t T.F T.F T.F T.F

val prj5 : T.t -> T.t T.F T.F T.F T.F T.F

val prj_succ : (T.t -> ’a) -> T.t -> ’a T.F

val fold : (’a T.F -> ’a) -> T.t -> ’a

val unfold : (’a -> ’a T.F) -> ’a -> T.t

end

The module itself is simple implemented as

functor AuxDefs(structure T : TYP) : AUX_DEFS = struct

structure T = T

structure Injs = Injs(structure T = T)

structure Prjs = Prjs(structure T = T)

structure Rec = Rec(structure T = T)

open Injs Prjs Rec

end

This module is applicable to any monomorphic recursive type regardless of the
structure. Extending our examples to handle polymorphic types is straightforward.
For a language like ML that lacks higher-order polymorphism one needs a set of
these definition for each type constructor of a different arity.



Functional pearls 17

4 Declarative Rewriting

Recursion schemas also allow for a more declarative programming style. Given an
interface for well formed formulas we can write a simplifier for it by specifying it
as a set of atomic rewrites that are inductively applied to a formula in a top-down
way.

First let us define our interface

signature WFF = sig

type t

datatype ’a F = FALSE

| TRUE

| VAR of string

| AND of (’a * ’a)

| OR of (’a * ’a)

| NOT of ’a

val Fmap : (’a -> ’b) -> ’a F -> ’b F

val inj : t F -> t

val prj : t -> t F

end

Next we define a function to rewrite values that adhere to the interface

functor Simplify(structure Wff : WFF) : sig

structure Wff : WFF

val simplify : Wff.t -> Wff.t

end = struct

structure AuxDefs = AuxDefs(structure T = Wff)

structure Wff = Wff

open AuxDefs Wff

fun simplify e = let

fun rewrite (NOT FALSE) = TRUE

| rewrite (NOT TRUE) = FALSE

| rewrite (NOT(NOT x)) = prj1 x

| rewrite (AND(TRUE, x)) = x

| rewrite (AND(x, TRUE)) = x

| rewrite (AND(FALSE, x)) = FALSE

| rewrite (AND(x, FALSE)) = FALSE

| rewrite (OR(x, TRUE)) = TRUE

| rewrite (OR(TRUE, x)) = TRUE

| rewrite (OR(FALSE, x)) = x

| rewrite (OR(x, FALSE)) = x

| rewrite (x) = (Fmap inj1) x

in unfold (rewrite o prj2) e

end

end



18 D. C. Wang and T. Murphy VII

The function rewrite operates on patterns of depth two. So we must insert the
appropriate coercions to make the types work out. Notice that we are using unfold

to achieve a top-down rewrite of the term. Compare the approach above to the
more traditional top-down rewrite

structure SimplifyWff = struct

datatype t = False

| True

| Var of string

| And of (t * t)

| Or of (t * t)

| Not of t

fun simplify e = let

fun f (Not False) = True

| f (Not True) = False

| f (Not(Not x)) = f x

| f (And(True, x)) = f x

| f (And(x, True)) = f x

| f (And(False, x)) = False

| f (And(x,False)) = False

| f (Or(x,True)) = True

| f (Or(True, x)) = True

| f (Or(False, x)) = f x

| f (Or(x,False)) = f x

| f (Not x) = Not(f x)

| f (And(x,y)) = And(f x, f y)

| f (Or(x,y)) = Or (f x, f y)

| f x = x

in f e

end

end

Notice that last clause of the function rewrite in our declarative approach must be
expanded into four clauses in the traditional approach. Our declarative approach
is less error prone and more concise than the more traditional explicitly recur-
sive technique. However, it does take a little practice to learn where to insert the
coercions.

5 Limitations

The technique presented so far easily handles all types constructed with sums and
products. Extending it to the polymorphic case is straightforward. It is not clear if
we can extend our approach to handle exponential types such as

datatype istream = Susp of unit -> (int * istream)



Functional pearls 19

where there is a recursive occurrence of a type in a function type. However, there
already exists well understood metatheory for this (Meijer & Hutton, 1995) which
we should be able to adapt.

What we have presented is more than adequate for dealing with abstract syn-
tax trees and other common types found in the implementation of compilers and
language processing tools. This is especially true for tools that deal with lambda
terms.

6 Performance Impact

We report some very basic numbers for the following programs to understand the
performance impact of our programming idiom, and to highlight some performance
issues for compiler writers. Below are four different implementations of fib. Each
one uses a different representation of natural numbers and an different interface to
the representation.

structure ProgramA = struct

datatype nat = Zero | Succ of nat

fun add (Zero, m) = m

| add (n, Zero) = n

| add (Succ n, Succ m) = Succ(Succ(add(n, m)))

val one = Succ(Zero)

fun fib Zero = one

| fib (Succ Zero) = one

| fib (Succ (Succ n)) = add(fib n, fib (Succ n))

end

structure ProgramB =

Fib(structure N = SimpleNat

open N

fun add (n, m) =

case (prj n, prj m) of

(ZERO, m) => inj m

| (n, ZERO) => inj n

| (SUCC n, SUCC m) => inj(SUCC(inj(SUCC(add(n, m))))))

structure ProgramC =

struct

fun fib 0 = 1

| fib 1 = 1

| fib n = (fib (n - 2)) + (fib (n - 1))

end

structure ProgramD =

Fib(structure N = FastNat



20 D. C. Wang and T. Murphy VII

val add = (op +))

Programs A and B use the simple but naive inductively defined representation of
naturals. Programs C and D use integers to represent naturals. Programs A and C
directly access the representation of naturals while programs B and D use the same
abstract interface to the different representations.

Table 1 contains the runtimes of the programs averaged over ten runs when
computing fib(24)1 on a 1Ghz x86 processor running Linux for a variety of ML
compilers. Programs A and B are using what should be isomorphic representations

Table 1. Wall clock runtime in milliseconds.

Simple Fast
Compiler A B C D

MLton 20020410 69 67 4 4
PolyML 4.1.2 92 99 4 23
SML/NJ 110.0.7 93 263 6 22
MLKit 4.0 96 236 4 13
SML/NJ 110.41 140 361 4 15
Moscow ML 2.0 525 884 15 93

of natural numbers. Program B however runs slower in some instances because the
compiler does not remove the interface overheads or deal with the two-level repre-
sentation for the natural type efficiently. Programs C and D are using the same fast
representation of natural numbers, and program D is slower in some cases because
of interface overheads. It is important to note that the MLton compiler smart is able
to optimize away all the overhead associated with both our interfaces. Although
the MLton compilers is a whole-program optimizing compiler. The optimizations
need for this idiom should not require whole-program analysis. In particular cross
module inlining, smart representation decisions, and some local constant folding
should be sufficient. It also seems the newer versions of SML/NJ has made some
representation decisions that are negatively impacting performance.

Since programs A and B are using the naive representation, they are significantly
slower than programs C and D across all compilers. In all cases Program D which
uses our abstract interface with our fast representation of naturals runs faster then
programs A or B. Notice that program D was simply obtained by applying a dif-
ferent implementation of a module implementing the NAT interface while program
C is a complete rewrite of program A. In short if a change in representation can
provide significant algorithmic improvements or software engineering benefits the
overhead of using an abstract interface may be worth it.

1 We choose n = 24 because larger values caused some implementations to fail.



Functional pearls 21

We hope that all compiler writers will consider adding optimizations that rec-
ognize this particular idiom of programming and further reduce the cost of using
it.

7 Case Study: TILT

In order to address the issue of scaling this idiom to large programs, we give a case
study of a significant real-world application, the TILT compiler for Standard ML.

TILT (Petersen et al., 2000) is type-directed so that it transforms types along side
code and uses type information to perform optimizations as well as to help verify the
compiler’s work and debug errors in the compiler. A naive representation of types
may lead to exponential slowdowns in both space and time. TILT’s intermediate
stages, in particular, must manipulate a large amount of type information. Though
TILT takes care to do so in an asymptotically efficient way, TILT does not employ
strategies such as hash consing, de Bruijn indexing, and explicit substitutions (Shao,
1998) in order to exploit redundancy that can only be detected at run-time. As an
experiment, we decided to test how the TILT compiler might benefit from these
techniques.

TILT originally used a concrete type to represent its intermediate language. This
poses a problem for experimenting with different representations, since using a con-
crete type commits to one representation. The intermediate phase of TILT consists
of more than 25,000 lines of code that manipulate these types directly. Therefore,
the idea of changing to a FLINT-style abstract interface (as in Section 1.1) was
rather daunting, especially considering that we wanted to try different combina-
tions of techniques, and weren’t sure if we would be able to achieve any benefit at
all.

As a concession to efficiency over generality we rewrote the TILT compiler to use
a partially-abstract interface (as in Section 1.2), rather than using the fully general
recursion schema approach. This allows us to reuse the existing TILT representation
of types as the underlying abstract type just as the version of SimpleNat does in
Section 1.2.

Retrofitting the existing code to use this new interface was a tedious but simple
task. The most significant work comes from rewriting nested patterns. We believed
that our prj and inj operations would be somewhat expensive, so we did not
want to expose several levels at once, since this forces extra calls to prj when they
may not be needed. Therefore, we needed to manually rewrite nested patterns as
primitive case statements.

We discovered that nested patterns are actually quite rare. In the 10,000 lines
of type checker and support code, there were only approximately ten patterns (out
of hundreds) that needed non-trivial changes. Had we been writing the code from
scratch, the lack of nested patterns would have posed no problem at all.

We found that the type checker incurred a 20% speed penalty for using the par-
tially abstract interface. This seemed to be due to lack of cross-module optimizations
(such as inlining) and the disabling of low-level optimizations for datatypes. In the
end, it also turned out that the TILT compiler’s existing approach for dealing with



22 D. C. Wang and T. Murphy VII

types in an asymptotically efficient way could not be easily improved on by various
optimized representations. However, being able to experiment with various different
representations without having to continually remodify clients of the intermediate
language was a definite win.

It would be very desirable for compilers to implement the appropriate optimiza-
tions so that 20% speed penalty for just using the interface could be reduced to
zero. Further details of the various representation experiments carried out can be
found in Murphy (Murphy VII, 2002).

8 Related Work

Wadler (Wadler, 1987) presents the first concrete proposal to provide data ab-
straction and pattern matching in a relatively clean way. However, extending some
of his ideas for eager impure languages is not as straightforward as one would
like (Okasaki, 1998). In particular to provide sensible semantics in impure lan-
guages the results of view coercions need to be memoized. Our idiom creates an
explicit intermediate data structure, the recursion schema, that provides the effect
of memoizing the view coercions.

Meijer, Fokkinga, and Paterson present a metatheory for recursive types and
apply it to derive equational reasoning principals for generalized recursion operators
such as fold and unfold. In a follow up paper (Meijer & Hutton, 1995) they
reintroduce their metatheory as a set of definitions for the functional language
Gopher. They also extend their metatheory to handle function spaces. However,
they do not directly apply their metatheory to hide the underlying representation
of the values.

There also have been numerous extensions proposed to extend the power of pat-
tern matching (Aitken & Reppy, 1992; Fähndrich & Boyland, 1997). They provide
some syntactic sugar and are typically compile time abstractions that have no asso-
ciated runtime overhead. Refinement types also provide some similar benefits but
can be used to enforce and track many more non-trivial static properties. Views pro-
vide most of the benefits of all these systems but may incur some runtime penalties,
because view coercions have computational effect. Active patterns (Erwig, 1997) of-
fer yet another type of syntactic sugar. We believe we can extend our framework
to simulate Erwig’s active patterns with only a small loss in syntactic sugar. Our
approach of only revealing the top-level structure of an abstract type is similar
to some compilation techniques used to avoid expensive coercion functions when
compiling polymorphic values (Shao, 1997).

9 Conclusion

We have shown a simple and powerful programming idiom. Our idiom provides
programmers with pattern matching interfaces to abstract values. The technique
is a simple embedding of the well understood categorical metatheory of recursive
types into a concrete language. The power and generality of the metatheory leads
to simple and pleasant programming interfaces. These interfaces impose a certain



Functional pearls 23

amount of runtime and programming overhead but the flexibility of being able
to choose different representations or avoid representation coercions can pay for
many of the associated overheads of our technique. Adding some sort of compiler
or language support for our idiom would be very desirable.

Arguably programming with recursion schemas is not as pleasant as having di-
rect language support for views, refinement types, polytypic languages, or numerous
other possible language extensions. However, recursion schemas have the very prag-
matic advantage of not relying on any non-standard language extensions. They are
a practical and useful programming idiom that can be used in any existing language
that provides higher-order functions, polymorphism, and pattern matching.

From a language design standpoint the fact we can encode many different features
of various language extensions in pragmatic yet clumsy ways suggests that there
maybe some simple extensions to existing languages that will buy us some of the
power and expressiveness of many seemingly diverse extensions in a unified and
elegant way. For example having the type checker attempt to automatically insert
inj and prj functions would make programming with recursion schemas much more
pleasant, and almost completely transparent to the programmer.

10 Acknowledgments

Thanks to Matthias Blume, Robert Harper, John Reppy, and Philp Wadler for
reviewing earlier drafts and suggesting improvements, as well as the anonymous
reviewers.

References

Aitken, William E., & Reppy, John H. 1992 (June). Abstract value constructors. Pages
1–11 of: Proceedings of the 1992 ACM workshop on ML and its applications.

Davies, Rowan. (1997). A refinement-type checker for Standard ML. Pages 565–?? of:
International conference on algebraic methodology and software technology. Lecture
Notes in Computer Science, vol. 1349. Springer-Verlag.

Erwig, Martin. (1997). Active patterns. Lecture notes in computer science, 1268, 21–40.

Fähndrich, Manuel, & Boyland, John. 1997 (June). Statically checkable pattern abstrac-
tions. Pages 75–84 of: Proceedings of the 1997 ACM SIGPLAN international conference
on functional programming.

Flanagan, Cormac, Sabry, Amr, Duba, Bruce F., & Felleisen, Matthias. (1993). The
essence of compiling with continuations. Pages 237–247 of: Proceedings acm sigplan
1993 conf. on programming language design and implementation, pldi’93, albuquerque,
nm, usa, 23–25 june 1993. SIGPLAN Notices, vol. 28(6). New York: ACM Press.

Freeman, Tim, & Pfenning, Frank. (1991). Refinement types for ML. Pages 268–277 of:
Proceedings of the SIGPLAN ’91 symposium on language design and implementation.
Toronto, Ontario: ACM Press.

Meijer, Erik, & Hutton, Graham. (1995). Bananas in space: Extending fold and unfold to
exponential types. Pages 324–333 of: Proceedings of the seventh international conference
on functional programming languages and computer architecture. La Jolla, California:
ACM Press, for ACM SIGPLAN/SIGARCH and IFIP WG2.8.

Meijer, Erik, Fokkinga, Maarten, & Paterson, Ross. (1991). Functional programming



24 D. C. Wang and T. Murphy VII

with bananas, lenses, envelopes and barbed wire. Pages 124–144 of: Hughes, John (ed),
Proceedings of the fifth international conference on functional programming languages
and computer architecture. LNCS, vol. 523. Cambridge, MA, USA: Springer, for ACM.

Murphy VII, Tom. 2002 (Mar.). The wizard of TILT: Efficient, convenient and abstract
type representations. Tech. rept. CMU-CS-02-120. School of Computer Science, Carnegie
Mellon University.

Okasaki, Chris. 1998 (Sept.). Views for Standard ML. Pages 14–23 of: Sigplam workshop
on ml.

Petersen, Leaf, Cheng, Perry, Harper, Robert, & Stone, Chris. 2000 (Mar.). Implementing
the TILT internal language. Tech. rept. CMU-CS-00-180. School of Computer Science,
Carnegie Mellon University.

Pierce, Benjamin C. (2002). Types and programming languages. MIT Press. Pages 275–
278.

Shao, Zhong. 1997 (June). Flexible representation analysis. Pages 85–98 of: Proceedings
of the 1997 ACM SIGPLAN international conference on functional programming.

Shao, Zhong. 1998 (Sept.). Implementing typed intermediate language. Pages 313–323
of: Proceedings of the 1998 ACM SIGPLAN international conference on functional pro-
gramming.

Sheard, Tim. 2001 (Sept.). Generic unification via two-level types and parameterized mod-
ules. Pages 86–97 of: Proceedings of the 2001 ACM SIGPLAN international conference
on functional programming.

Wadler, Philip. (1987). Views: A way for pattern matching to cohabit with data abstrac-
tion. Pages 307–312 of: Proceedings, 14th symposium on principles of programming
languages. Association for Computing Machinery.

A A Basic Lambda Compiler

We want to provide a non-trivial example of our programming idiom by fleshing out
the details of a compiler for an untyped lambda calculus. Each phase of the compiler
will operate on a different refinement of lambda terms. We will only present some
illustrative fragments of the complete system. Full source code can be obtained
from TODO insert url.

A.1 Interfaces

We begin with a few modules that provide some basic types which are shared across
each refinement of lambda terms.

structure Var :> sig

type t

val var : string -> t

val fresh : string -> t

. . .
end = . . .
structure Prim :> sig

type t

. . .
end = . . .



Functional pearls 25

Here is the interface for general lambda terms using our technique of recursion
schemas

signature LAM =

sig

type var = Var.t

type prim = Prim.t

type t

datatype ’a F =

VAR of var

| PRIM of prim * ’a list

| APP of ’a * ’a list

| LAM of var list * ’a

val Fmap : (’a -> ’b) -> ’a F -> ’b F

val inj : t F -> t

val prj : t -> t F

end

Next we provide an interface for terms in a-normal form (ANF) (Flanagan et al.,
1993) which is a syntactic restriction of general lambda terms. ANF terms bind ev-
ery non-trivial expression to a variable. ANF terms also make the order of evaluation
and the difference between tail and non-tail calls explicit. Tail-calls are represented
by the JUMP constructor.

signature ANF =

sig

type var = Var.t

type prim = Prim.t

type t

datatype ’a F =

RET of var

| PRIM of var * (prim * var list) * ’a

| FUN of var * (var list * ’a) * ’a

| CALL of var * (var * var list) * ’a

| JUMP of var * var list

val Fmap : (’a -> ’b) -> ’a F -> ’b F

val inj : t F -> t

val prj : t -> t F

end

Finally we represent CPS terms. CPS terms can be seen as a refinement of ANF
terms where all calls are tail-calls and no function returns.

signature CPS =

sig



26 D. C. Wang and T. Murphy VII

type var = Var.t

type prim = Prim.t

type t

datatype ’a F =

HALT of var

| PRIM of var * (prim * var list) * ’a

| FUN of var * (var list * ’a) * ’a

| JUMP of var * var list

val Fmap : (’a -> ’b) -> ’a F -> ’b F

val inj : t F -> t

val prj : t -> t F

end

An optimizing compiler will manipulate general terms as well as the ANF and
CPS refinements. Below is an interface for a set of functions that are useful in the
implementation and debugging of such a compiler.

signature COMPILE =

sig

structure Lam : LAM

structure ANF : ANF

structure CPS : CPS

val lam toString : Lam.t -> string

val lam freeVars : Lam.t -> Var.t list

val lam eq : Lam.t -> Lam.t -> bool

val lam alpha eq : Lam.t -> Lam.t -> bool

val lam rename : Lam.t -> Lam.t

val anf normalize : Lam.t -> ANF.t

val anf toString : ANF.t -> string

val anf toLam : ANF.t -> Lam.t

val anf rename : ANF.t -> ANF.t

val cps convert : ANF.t -> CPS.t

val cps toString : CPS.t -> string

val cps toLam : CPS.t -> Lam.t

val cps toANF : CPS.t -> ANF.t

val cps rename : CPS.t -> CPS.t

end

The functions anf toLam and cps toLam allow us to reuse functions such as
lam freeVars, lam eq, or lam alpha eq for ANF and CPS terms. Our interface
provides for three separate functions to convert terms to strings for debugging



Functional pearls 27

purposes as convenience, and to allow for the possibility of using specialized pretty
printers for each type.

We would like an implementation of the COMPILER interface to make functions
such as anf toLam and cps toLam be implemented as identity functions.

A.2 Implementations

We start with a simple implementation of the LAM interface. In the module below
terms are represented with a concrete algebraic type and we simply provide some
interface functions. A two-level representation would be more elegant but depending
on the compiler may not be as efficient as this more heavy handed approach.

structure Lam : LAM =

struct

type var = Var.t

type prim = Prim.t

datatype t =

Var of var

. . .

datatype ’a F = . . .

fun Fmap f (VAR x) = VAR(x)

| Fmap f (LAM(xs,M)) = LAM(xs, f M)

. . .

fun inj (VAR x) = Var(x)

| inj (LAM(xs,M)) = Lam(xs,M)

. . .

fun prj (Var x) = VAR(x)

| prj (Lam(xs,M)) = LAM(xs,M)

. . .
end

Here is a module that implements the ANF interface by representing ANF terms
as abstract lambda terms

functor ANF(structure Lam : LAM) : ANF =

struct

structure Lam = Lam

type var = Lam.var

type prim = Lam.prim

type t = Lam.t

datatype ’a F = . . .
val var = Lam.inj o Lam.VAR



28 D. C. Wang and T. Murphy VII

val vars = List.map var

val app = Lam.inj o Lam.APP

val lam = Lam.inj o Lam.LAM

val prim = Lam.inj o Lam.PRIM

fun bnd (x,N,M) = app(lam([x],M),[N])

fun inj (RET x) = (var x)

| inj (FUN (x,(ys,N),M)) = bnd(x,lam(ys,N),M)

. . .

fun prj x =

case Prjs.prj2 x of

Lam.VAR x => RET x

| Lam.APP(Lam.LAM([x],M),[Lam.LAM(ys,N)]) =>

FUN(x,(ys,N),M)

. . .
| => raise (Fail "bug")

end

Here is a module that implements the CPS interface by representing CPS terms
as ANF terms

functor CPS(structure ANF : ANF) : CPS =

struct

structure ANF = ANF

type var = ANF.var

type prim = ANF.prim

type t = ANF.t

datatype ’a F = . . .
fun inj’ (HALT arg) = ANF.RET arg

| inj’ (FUN arg) = ANF.FUN arg

. . .
fun inj x = ANF.inj (inj’ x)

fun prj’ (ANF.RET arg) = HALT arg

| prj’ (ANF.FUN arg) = FUN arg

. . .
| prj’ = raise (Fail "bug")

fun prj x = prj’ (ANF.prj x)

end

The LamUtil module provides implementations of pretty printers, equality, α-
equality, and α-renaming as well as several other functions for general lambda
terms.

functor LamUtil(structure Lam : LAM) =

struct



Functional pearls 29

. . .
fun toString M = . . .
fun freeVars M = . . .
fun rename M = . . .
fun eq M M’ = . . .
fun alpha_eq M M’ = . . .

end

The module below implements the a-normalization algorithm presented by Sabry
et al. (Flanagan et al., 1993).

functor ANFNorm(structure Lam : LAM

structure ANF : ANF) : sig

val anf normalize : Lam.t -> ANF.t

end = struct

structure ANF = ANF

val ret = ANF.inj o ANF.RET

val call = ANF.inj o ANF.CALL

val jump = ANF.inj o ANF.JUMP

val fun’ = ANF.inj o ANF.FUN

val prim = ANF.inj o ANF.PRIM

open Lam

datatype cont arg =

V of Var.t

| A of (Var.t * Var.t list)

fun init (V x) = ret x

| init (A(x,ys)) = jump(x,ys)

fun norm M k =

(case prj M of

(VAR x) => k (V x)

| (LAM (xs,M)) =>

let val f = Var.fresh "f"

val M = norm M init

in fun’(f,(xs,M),k (V f))

end

| (APP(M,Ms)) =>

norm name M (fn x =>

norm names Ms (fn ys =>

k (A(x,ys)))))

| (PRIM(p,Ms)) =>

let val t = Var.fresh "t"

in norm names Ms (fn xs =>



30 D. C. Wang and T. Murphy VII

prim(t,(p,xs),k (V t)))

end

and norm name M k =

norm M (fn (V x) => k x

| (A(x,y)) =>

let val t = Var.fresh "t"

in call(t,(x,y),k t)

end)

and norm names [] k = k []

| norm names (M::Ms) k =

norm name M (fn x =>

norm names Ms (fn xs =>

k (x::xs)))

fun anf normalize M = norm M init

end

The module below implements a straightforward CPS conversion expressed as a
higher-order fold over ANF terms.

functor CPSCvt(structure ANF : ANF

structure CPS : CPS) : sig

val cps convert : ANF.t -> CPS.t

end = struct

structure CPS = CPS

val halt = CPS.inj o CPS.HALT

val jump = CPS.inj o CPS.JUMP

val fun’ = CPS.inj o CPS.FUN

val prim = CPS.inj o CPS.PRIM

open ANF

structure Rec = Rec(structure T = ANF)

fun convert M k = let

fun f (RET x) k = k x

| f (FUN(x,(ys,N),M)) k = let

val kv = Var.fresh "k"

val ys = kv::ys

fun ret y = jump(kv,[y])

in fun’ (x,(ys,N ret),M k)

end

| f (CALL(t,(x,ys),M)) k = let

val ret = Var.fresh "ret"

val N = jump(x,ret::ys)

in fun’(ret,([t],M k),N)



Functional pearls 31

end

| f (JUMP(x,ys)) k = jump(x,ys)

| f (PRIM(t,(p,xs),M)) k =

prim(t,(p,xs),M k)

in Rec.fold f M k

end

fun cps convert M = convert M halt

end

Finally we provide a module that implements the COMPILER interface. The module
is parameterized by the implementation of general lambda terms. Inside the module
it is apparent that both CPS and ANF terms are represented as general lambda
terms. We take advantage of this fact and reuse as much code as possible. Externally
because we use an opaque signature constraint all the general terms, ANF terms,
and CPS terms will be seen as distinct abstract types to clients of the resulting
module.

functor Compile(structure Lam : LAM) :> COMPILE =

struct

structure Lam = Lam

structure ANF = ANF(structure Lam = Lam)

structure CPS = CPS(structure ANF = ANF)

structure LU = LamUtil(structure Lam = Lam)

structure AN = ANFNorm(structure Lam = Lam

structure ANF = ANF)

structure Cvt = CPSCvt(structure ANF = ANF

structure CPS = CPS)

val lam toString = LU.toString

val lam freeVars = LU.freeVars

val lam eq = LU.eq

val lam alpha eq = LU.alpha eq

val lam rename = LU.rename

val anf normalize = AN.anf normalize

val anf toString = lam toString

val anf toLam = (fn x => x)

val anf rename = lam rename

val cps convert = Cvt.cps convert

val cps toString = anf toString

val cps toLam = (fn x => x)

val cps toANF = (fn x => x)

val cps rename = anf rename

end


