
SIGBOVIK’75 Technical Note: Conditional Move For Shell Script Acceleration

Dr. Jim McCann

IX @ TCHOW-ARPA

Dr. Tom Murphy VII

TOM7 @ T7-ARPA

Abstract

One of the most effective programming interfaces for modern microprocessing

computers is the command-line interpreter, or shell. Shell scripts provide

a high-level abstraction of the operations of a microprocessor, making them

an appealing alternative to hand-translated machine code or so-called ‘‘macro

assembly languages’’. Unfortunately, shell programs are also significantly

slower than their assembly counterparts. One potential source of this slow-

down is branch misprediction. In this paper we show how to address this draw-

back by adding predicated execution to the shell.

1 Introduction

One common trend in computing as of late

has been the migration of features from

CISC instruction sets developed by DEC,

Intel, and other captains of industry to

the relatively underserved ‘‘high level’’

languages community, who generally focus

on simpler and less modern operations. We

continue this tradition by showing how to

bring the advantages of predicated execu-

tion to shell scripting.

Predicated execution allows processors

to avoid the root cause of branch predic-

tion stalls: branches. Instead, instruc-

tions are provided which can check one or

more predicate registers and effectively

become no-ops if the registers are not

set. These so-called predicated instruc-

tions are always executed, so no pipeline

stalls need to be included while the pro-

cessor decides which instruction needs to

be fetched next.

Predicated execution for the shell

provides a similar benefit -- expensive

branch predictions can be avoided, result-

ing in tremendous speed-ups (up to 100x in

our tests).

2 Implementation

The minimal instruction needed for con-

ditional execution on a modern five-stage

pipelined cpu is conditional move. This

instruction moves a result from one reg-

ister to another if a tertiary condition

register is set.

In shell scripting, where files are

the obvious equivalent of registers, the

semantics are clear:

Usage:

cmv <file1> <file2>1

Rename file1 to file2, if the condi-

tion register is set.

But what is the condition register? We

explored two choices of condition register

-- the exit value of the previous command,

which leaves us with a bit of a problem,

since this value is not readily available

to a process; and the processor’s cf2 reg-

ister, which is also not readily available

to shell scripts.

2-1 The ‘csh’ shell

The first method we propose to allow easy

access to the return value of the pre-

vious command is to run a modified shell

-- which we dub the ‘csh’ shell -- that

stores the return value of the previous

command into an environment variable when

invoking a subprocess.

In our implementation (Figure A),

the variable is called ‘DOLLAR-

SIGN QUESTIONMARK ALL SPELLED OUT’ for obvi-

ous reasons.

2-2 The ‘c’ utility

While it would be straightforward to im-

plement, exclusively, a conditional move

1. Note the use of AT&T assembly syntax,

where the source operand comes before

the destination operand.
2. ‘‘condition flag’’

diff --git a/src/exec.c b/src/exec.c

index 87354d4..7552f8d 100644

--- a/src/exec.c

+++ b/src/exec.c

@@ -112,6 +112,8 @@ shellexec(char **argv, const char *path, int idx)

char **envp;

int exerrno;

+ /* pass exit status of last process to executed program */

+ setvarint("DOLLARSIGN_QUESTIONMARK_ALL_SPELLED_OUT", exitstatus, VEXPORT);

envp = environment();

if (strchr(argv[0], ’/’) != NULL) {

tryexec(argv[0], argv, envp);

Figure A: This patch for https://git.kernel.org/pub/scm/utils/dash/dash.git/ creates a

shell that stuffs the return value of the previous command into an appropriately-named

environment variable.

utility; we instead embraced the high-

level nature of shell scripting by creat-

ing a general purpose predication utility,

‘c’, which (when called as ‘cNNN ...’)

will run ‘NNN ...’ when the proper predi-

cate values are set. Since this utility’s

behavior is based on its name, one can

create a new instance of it by simply cre-

ating an inode link. For example, to make

a conditional version of /bin/sh:

ln -s /bin/c /bin/csh3

Our implementation of ‘c’ (see

https://github.com/ixchow/c/blob/master/c.c)

is written, naturally, in C, and is built

to support both the shell-level approach

discussed above and the kernel-level ap-

proach discussed below.

3 Evaluation

In order to evaluate the performance gains

of conditional evaluation, we compared

conditional and traditional versions of

several simple shell scripts (see Ap-

pendix). We timed the scripts by first

clearing the page cache, then running the

traditional version of the script, then

running the conditional version of the

script.

3. Note the use of INTEL assembly syntax,

where the source operand comes after

the destination operand.

The tested tasks were:

* ‘echo’ which makes two static checks

and echos a string depending on the

result;

* ‘copy’ which copies the smaller of

two files to a destination;

* and ‘compile’ which compiles an output

file depending on the timestamp of a

source file.

Results are given in Table I. In all

cases the predicated execution version of

the task does better. Indeed, for the com-

pile task, the overall execution time is

reduced to 1894299ns -- that’s 139426014ns

faster than simply running the compiler!

4 Pushing performance

While a 2-100x cyclefold improvement is

nothing to shake a luggable microcom-

puter’s vacuum fluorescent display at,

these results fall short of what we could

hope for. One possible explanation for

the lukemoist performance is that the

condition itself is stored in a high-

level way (see Figure B) using environment

variables. Using high-level parts of the

computer is a well-known cause of cycle

overslows.

The fastest place to store the condi-

tion is in the CPU itself, using elec-

trons. The CPU can only be accessed

task | copy | echo | compile

------+--------------+------------+-------------

ours | 457516888 ns | 14104407 ns | 1894299 ns

old | 5753853493 ns | 29336387 ns | 182916245 ns

Table I: Benchmark results. Our approach is dramatically faster in all cases.

through the Operating Kernel. As a proof

of concept, the authors created a Kernel

module4 that directly accesses the CPU’s

FLAGS register. It presents the flags as

files in the /proc filesystem where they

can be accessed by any process:

$ ls -al /proc/flags

-rw -rw -rw - 1 root root 0 af

-rw -rw -rw - 1 root root 0 cf

-rw -rw -rw - 1 root root 0 df

-rw -rw -rw - 1 root root 0 if

-rw -rw -rw - 1 root root 0 iopl0

-rw -rw -rw - 1 root root 0 iopl1

-rw -rw -rw - 1 root root 0 nt

-rw -rw -rw - 1 root root 0 of

-rw -rw -rw - 1 root root 0 pf

-rw -rw -rw - 1 root root 0 sf

-rw -rw -rw - 1 root root 0 tf

-rw -rw -rw - 1 root root 0 zf

Each file contains -- at the moment

that it is read -- either a ‘‘1’’ or

‘‘0’’ if the corresponding bit is set

in the FLAGS register. Writing a ‘‘1’’

or ‘‘0’’ to a file will modify the cor-

responding bit. The ‘c’ utility described

in Section 2-2 has experimental support

for storing the condition result in the

cf flag (formally ‘‘carry flag’’ but the

mnemonic can also be used for ‘‘condition

flag’’) via this kernel extension.

Alas, with great power comes great in-

stability. There is some risk that the

FLAGS register5 is modified by other ap-

plications running in time-share with the

‘‘main’’ shell script. In this case, the

FLAGS register may not correctly reflect

4. It can be downloaded via hypertex at

sf.net/p/tom7misc/svn/HEAD/tree/trunk/csh/
5. As an additional technical matter, this

approach does not work for multiproces-

sor systems, where there is one FLAGS

register *per CPU*. Fortunately, such

systems are a mere theoretical curios-

ity.

the indicated status, and conditional

operations may occur or not occur con-

trary to the shell program’s coding. On

the other hand, some uses of /proc/flags

are very robust. For example, setting

/proc/flags/tf, the trap flag, reliably

terminates the current process with a fa-

tal error.

We installed this kernel module on sev-

eral shared workservers that we admin-

ister. Preliminary user reports include

indications that the behavior is ‘‘very

unstable’’ or ‘‘does not work at all.’’

Clearly, a wider-scale test deployment is

needed.

5 Future Work

Given that predicated execution leads

to a CISC-ridiculous improvement in the

speed of shell scripts, it is natural

to ask what other CISC-onesquential re-

sults can be obtained by bringing other

micro-architectural features to high-level

languages.

Branch delay slots -- instructions af-

ter a branch that are always executed

-- can already be trivially supported in

shell by writing the delayed commands as a

background task in front of the branch in

question, then foregrounding them after-

ward, as per:

delay -command &

if [-x "something"]

then

fg

#...

else

fg

#...

fi

Notice that this is actually much more

flexible than current (MIPS) micropro-

cessor implementations, since multiple

commands may be queued in the delay slot

+-------------------+

| ENVIRONMENT |

| (VARIABLES) |

| +---------------+ |

| | SHELL PROMPT | |

| | (SHELL LANGU - | |

| | AGE) | |

| | +-----------+ | |

| | | USER APPL -| | |

| | | ICATION | | |

| | | (C PROGR - | | |

| | | AMMING LA -| | |

| | | NGUAGE) | | |

| | | +-------+ | | |

| | | |FILE S-| | | |

| | | |YSTEM | | | |

| | | |(BYTES)| | | |

| | | |+-----+| | | |

| | | ||KERN -|| | | |

| | | ||EL || | | |

| | | ||(ASM)|| | | |

| | | ||+---+|| | | |

| | | |||CPU||| | | |

| | | |||(E-||| | | |

| | | |||LE -||| | | |

| | | |||CT -||| | | |

| | | |||RO -||| | | |

| | | |||NS)||| | | |

| | | ||+- -+||| | | |

| | | +-------+ | | |

| | +-----------+ | |

| +---------------+ |

+-------------------+

Figure B: The ‘‘levels’’ of a computer-

system, from ‘‘high’’ (outer boxes) to

‘‘low’’ (inner boxes). As we descend to

lower levels of the computer, the program-

ming tools used (in parentheses) become

more difficult, but more powerful, and

more fast. Only master wizards are permit-

ted at the lowest levels, such as ‘CPU’.

position and overlapped with the test exe-

cution.

A similar approach works to enable

speculative execution, wherein code in

a conditional is executed before the con-

dition is checked:

true -command &

false -command &

if [-x "something"]

then

kill %%

fg %-

else

kill %-

fg %%

fi

Mind you, if either true-command or

false-command have any side-effects before

the test completes, this approach may lead

to undesirable output; but a fast enough

CPU will certainly turn this ‘‘race condi-

tion’’ into a ‘‘victory condition’’. As a

compromise, on slower CPUs, each branch of

the if statement could be run in a sepa-

rate chrooted union-mount, with a snapshot

of the result written back after the test

has resolved.

Such a technique may be vulnerable to

the Shpectre vulnerability, leaking in-

formation to other processes on the time-

share via side-channels like the cache.

Thus it is recommended to flush the cache

before and after using this technique:

sync

echo 3 > /proc/sys/vm/drop_caches

swapoff -a

true -command &

false -command &

if [-x "something"]

then

kill %%

fg %-

else

kill %-

fg %%

fi

swapon -a

echo 3 > /proc/sys/vm/drop_caches

sync

6 Conclusions

We have demonstrated that shell scripts

can benefit from conditional execution.

Q E

E D

Appendix: Test Code

This appendix contains source listings for the the shell programs used in the bench-

marking process described above. The utilities ‘cecho’, ‘ccp’, and ‘ccc’ are all links

to the ‘c’ program described in the main body of the paper. Notice how the predicated

execution versions are also generally shorter than their tranditional counterparts.

Echo; traditional

if ["A" = "A"]

then

/bin/echo "Hello"

fi

if ["A" = "B"]

then

/bin/echo "World"

fi

|

|

|

|

|

|

|

|

|

|

Echo; predicated execution

["A" = "A"]

cecho "Hello"

["A" = "B"]

cecho "World"

Copy; traditional

sizeA=‘stat -c %s fileA ‘

sizeB=‘stat -c %s fileB ‘

if [$sizeA -le $sizeB]

then

echo "fileA is smaller"

cp fileA fileS

else

echo "fileB is smaller"

cp fileB fileS

fi

|

|

|

|

|

|

|

|

|

|

|

|

Copy; predicated execution

sizeA=‘stat -c %s fileA ‘

sizeB=‘stat -c %s fileB ‘

[$sizeA -le $sizeB]

cecho "fileA is smaller"

ccp fileA fileS

[$sizeA -gt $sizeB]

cecho "fileB is smaller"

ccp fileB fileS

Compile; traditional

if ["prog.cpp" -nt "prog"]

then

cecho "Compiling program ..."

cc prog.cpp -lstdc ++ -o prog

fi

./prog

|

|

|

|

|

|

|

|

Compile; predicated execution

["prog.cpp" -nt "prog"]

cecho "Compiling program ..."

ccc prog.cpp -lstdc++ -o prog

./prog

	Introduction
	Implementation
	Evaluation
	Pushing performance
	Future Work
	Conclusions

