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Abstract

This paper is an earnest attempt to answer the following
question scientifically: What words ought to exist?

Keywords: computational cryptolexicography, n-Markov
models, coinduction

Introduction

During a recent high-stakes game of Scrabble-brand
Crossword Puzzle! 1 had what could only be described
as a killer bingo word (all 7 tiles) that, after careful
study, I determined could not be placed anywhere on
the board. Later in that same game, I had another se-
quence of letters that just totally seemed like it should
be able to make some long-ass words, like for example
“oilsoap” which turns out is not a legal Scrabble word?2
This naturally made me frustrated and I wanted to do
something about it. Why can’t “oilsoap” be a word?
Or “loopsia”’? Words are introduced into the lexicon all
the time. My first reaction of course was to make an on-
line version of Scrabble where all words are legal. This
is called Scrallbe (where they can all be words!®) This
is available at http://snoot.org/toys/scrallbe, and
is pretty boring, I gotta be honest (Figure 1).

The thing is, it’s just more fun when some words
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Appears in SIGBOVIK 2011 with the blessing of the Associa-
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IScrabble is a registered trademark of Hasbro Inc./Milton
Bradley, and Mattel/JW Spear & Sons plc.

2There are actually no 7-letter words that can be made from
these letters. Don’t even bother. Even if playing off an exist-
ing letter on the board, the best we can do are the non-bingos
“topsoil,” “topsail,” or “poloist” with an available t.

3As of 2011, the official Scrabble slogan is “every word’s a
winner!” which is clearly false.
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Figure 1: In-progress Scrallbe game, 753 points.

aren’t words. Think about it: If all words were real,
then you could never make a really devastatingly suc-
cessful challenge in Scrabble that like, rocked the whole
household and turned a formerly casual family games
night into some kind of crying contest. Spelling bees
could still exist, because while no matter what those
kids spelled? it would be a word, it would not neces-
sarily be the right word, just like maybe a homophone.
There would be fewer bar fights, but probably not that
many fewer. Moreover, iuhwueg nznie a uaohahweih
zmbgba bawuyg!

Clearly we need more words, but not all of them. So
this raises the question: What words ought to exist?
This paper explores several different approaches for sci-
entifically answering this question, compares the results,

4Well, we have to consider the possibility that the kiddo would
use a letter that doesn’t exist. In this particular fantasy, grant

me also that every letter also exists, even L



and proposes specific words that should be added, with
their meanings.

Disclaimer possibly indicated for SIGBOVIK: The
“research” contained herein is 100% legitimate® I have
attempted to present it in a tutorial style that assumes
little mathematical or computer science background. I
have also left off the last S for Savings.

1 First idea: Wishlist

My website “snoot.org” has a number of games on it,
including a Scrabble clone called Scribble® and Boggle
clone called Muddle” This website has been running
for almost ten years, comprising over 150,000 Scribble
games totaling 3.8 million words placed and 628,000
Muddle games with over 10 million words found. Dur-
ing each game, players repeatedly attempt to play words
that aren’t real. The computer rebukes them, but hope
really springs eternal with these people. It’s like they
truly deeply wish to break out of the shackles of the
Official Scrabble Players Dictionary® So the first ap-
proach to determining what words ought to exist is to
analyze the words that people tried to play, in order to
try to extract the essence of word-yearning.

This analysis is quite straightforward. I took the ten
years of logs files and extracted each attempt to play a
word in Scribble or Muddle. These log files are quite
large, so the first step is just to get a count, for each al-
leged word, and store those in a more convenient format.
There were 3,572,226 total words attempted? in Scrib-
ble and 13,727,511 in Muddle. The most frequent ones
appear in Figure 2. Aside from the one-letter ones, the
most frequent words are legitimate words, since players
have a bias towards attempting words that will not be
rebuked by the computer.

Seeing the words that people wish existed is a sim-
ple matter of filtering out the words that already ex-
ist, using the Scrabble dictionary. (I also filtered out

5Source code is available at http://tom7misc.svn.
sourceforge.net/viewvc/tom7misc/trunk/wishlist/

Shttp://snoot.org/toys/scribble/

"http://snoot.org/toys/muddle/

8For the analyses in this section that depend on a list of le-
gal words, I actually use a modified version of SOWPODS, which
is the tournament list used in Australia and the UK, and sig-
nificantly more permissive than the US Tournament Word List.
Though the modified version is non-canonical, I stuck with it be-
cause it’s what’s been in use on the site for ten years.

9Here a word attempted is the major word of the play. This
does not include incidental words (typically two-letter ones)
formed in the perpendicular direction.

Scribble Muddle
Count  Word Count Word
45,605 a 20,412 late
42,315 i 19,405 rate
32,499 d* 19,276 dear
12,981 in 19,049 tear
12,851 oe 19,019 date
12,528 s* 18,771 lear
12,207 re 18,423 deal
11,159  tv 18,231 real
10,720 jo 18,138 lead
10,386 it 18,076 tale
10,369 et 17,969 lane
9,659 qua 17,956 sear
9,218 xi 17,570  read
9,099 go 17,193 teal
9,052 ow 17,170 lean
8,801 qat 17,071 dare
8,602 aa 16,923 dale
8,278 un 16,892  seal
8,142 en 16,806 sale
8,005 or 16,465 seat

Figure 2: Most frequently attempted words in Scribble
and Muddle. Asterisks indicate non-words.

one-letter “words”. It is easy to see that no one-letter
words should exist, again because of ambiguities cre-
ated in spelling bees. Not only when literally spelling
“bees”, but according to the official Scripps National
Spelling Bee rules, the speller may optionally pronounce
the word to be spelled before and after spelling it. So
if “s” were a word, then the following ridiculous ex-
change obtains: Judge: “S. The letter s. Etruscan ori-
gin.” Speller: “S. S. S.” and the judge cannot tell if
the speller meant to state the word before and after, or
thinks the word is spelled “sss”.) 22.3% of the words
attempted in Scribble and 36.8% in Muddle were not
real. The most frequent ones appear in Figure 3.

There’s a clear difference between these two lists. The
Scribble list is dominated by words involving difficult-
to-play letters like v (there are no legal two-letter v-
words). Most of the words would probably be acknowl-
edged as real, just not legal in Scribble. The ones that
don’t already have meanings, like “cho” and “int” and
“que” seem to be pretty good candidates to exist. The
Muddle list is all four-letter words (the minimum al-
lowed length) using common letters. Other than the



Scribble Muddle
Count Word Count  Word
11,159  tv 16,251 dane
4,003 ok 6,156 rane
2,862 iraq 5,603 sare
2,725 zen 5,576 nate
2,448 cho 4,863 mear
1,538 viz 4,750 cale
1,418 sdasda 4,616 nees
1,396 von 4,568 nale
1,136 etc 4,507 fale
878 int 4,347  deat
829 june 4,263  tean
745 1p 4,251 nile
719  zion 4,160 mens
665 cia 4,087  deel
661 jim 3,851 deam
651 iraqi 3,828 dana
648 ques 3,781  beed
542  que 3,769 lans
502 tim 3,725 tade

Figure 3: Most frequently attempted non-words in
Scrabble and Muddle.

ones that are already words, like “dane” and “nile” and
“mens” (as in “mens section” or “the powerfuel weapon
kills hard so many mens”), these are all good candidates
for words to exist. Probably if you were playing some-
one really intense in Scrabble, and he or she played one
of these, and was super deadpan about it and maybe
had caused some crying contests before, and a known
sesquipedalianist, you would let these fly because they
look like real words to me. A point in their favor is
that they would be quite low-scoring words in Scrab-
ble; not a z or ¢ to be found. Even in the Scribble list
there’s no “qzkwv” junk. The effect is probably due to
a few factors: Players are less likely to attempt obvious
non-words, common letters appear more often on the
rack and on the board and so the opportunity to play
words like in Figure 3 presents itself more frequently,
and in Muddle, there is no advantage to using unusual
letters, except the joy of being a weirdo. Nonetheless,
these lists are surely biased by the specifics of Scribble
and Muddle, and the question at hand is not just what
words ought to exist for the purpose of internet word
games, but for general purposes.

Another downside is that this method completely ig-
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Figure 4: Cumulative distribution of word frequency.
Approximately 25,000 different words (y axis) were is-
sued 55 times or fewer (x axis). The “total” area does
not appear much larger than its components because
this is a log-log plot.

nores the many words that are attempted only once or
a small number of times. Players are very creative; of
the 564,610 unique words attempted, 501,939 of them
aren’t real!l The vast majority of words are attempted
only a handful of times (Figure 4). Though those words
individually are not good candidates to exist, like tiny
stars wished upon in the night sky,'° in aggregate they
form a significant planetarium that may tell us what
kind of words people wish existed. For example, if we
saw that the words “sweeeeeeet”, “sweeeeeeeeeeceet”,
“sweeeet” and “sweeeeeeeeceeeeeet” occurred a few times
each, we could infer that people wished that words like
“sweet” with strictly more than two es were real words.
They might even be indifferent to the absolute num-
ber of es, as long as there existed some legal variation
with more than two es. (This appears to be borne out
by data. According to Google’s estimates, the words
“swe™t” for various medium-sized n (10-20) appear on
the Internet with similar frequency. The only excep-
tion is “sweeeeeeceeeeeceeeeeceet”, with 19 es, which un-

10 Astronomers now agree that stars do exist, by the way.



expectedly appears three times as often as 18 or 20 es
does; see Figure 5.) In order to lance these two boils, in
the next section I explore statistical methods for gener-
alizing from lots of individual examples.

2 Statistical models

The reason that people are more likely to play words
like “rane” is that the letters are common—they appear
more often in words, and more often in the Scrabble
bag. But it’s not simply a matter of the frequency of
letters; if it were, we would expect to see words like
“eee” dominating the list, since e is the most common
letter in English.!! People do not play such words often
because they do not seem like real words. “oilsoap”
seems more like a word than “ioaopsl” to most non-
crazy people, even though they contain the same letters.
This is because we have expectations on what letters
are likely to appear next to one another in words. This
section is about modeling expectations on what letters
appear together, and then using that model to generate
the most likely words that don’t yet exist.

Markov chains. This guy called Andrei Markov
had an idea which is pretty obvious in retrospect, but
he had it like a hundred years ago before any of us
were born (probably; if not: you are old), which he
didn’t call Markov chains but now they’re called Markov
chains because I guess in the hopes that contemporary
mathematicians will get stuff named after their dead
selves if they keep the tradition of naming stuff after
dead people alive. The idea is easiest to understand in
the context of the current problem. Suppose we know
that the words “hello”, “helpful” and “felafel” are the
only real words. The following is a frequency table of
how often each letter occurs.

This tells us that [ is by far the most common letter,
so the most likely word is probably “I” or “lIIII” or
something. A Markov chain is like a frequency table,
but instead of counting individual letters, we count how
often one letter comes after another. Here is the Markov
chain for those words.

1 Tied for first place with n, g, I, 4, s, and h.

17,900,000 0| swt
1,060,000 1 | swet
580,000,000 2 | sweet
1,310,000 3 | sweeet
806,000 4 | sweeeet
509,000 5 | sweeeeet
283,000! 6 | sweeeeeet
170,000 7 | sweeeeeeet,
115,000 8 | sweeeeeeeet,
75,200 9 | sweeeeeeeeet
94,3002 10 | sweeeeeeeeeet
51,700 11 | sweeeeeeeeeeet
37,900 12 | sweeeeeeeeeeeet
32,000 13 | sweeeeeeeeeeeeet
25,300 14 | sweeeeeeeeeeeeeet
24,300 15 | sweeeeeeeeeeeeeeet
41,0003 16 | sweeeeeeeeeeeeeeeet
55,000 17 | sweeeeeeeeeeeeeeeeet
45,000 18 | sweeeeeeeeeeeeeeeeeet
133,000% 19 | sweeeeeeeeeeeeeeeeeeet
34,800 | 20 | sweeeeeeeeeeeeeeeeeeeet
16,100° 25 | sweeeeeeeeeeeeeeeeeeeeeeeeet,
10,100 30 | sweeeeeceeeeeeeeeeeeeeeeeeeee. . . t
2,800 40 | sweeeeeeeeeeeeeeeeeeeeeeeeee. . . t
923 50 | sweeeeeeeeeeeeeeeeeeeeeeeeee. . . ¢
118 75 | sweeeeeeeeeeeeeeeeeeeeeeeeee. . .t
38 | 100 | sweeeeeeeeeeeeeeeeeeeeeeeeee. . . t
76 | 200 | sweeeeeeeceeceeceeceeeeeeeee. . . t

Figure 5: Frequency of “swe™t” on the internet for vari-
ous n, estimated by Google. Notes: (1) Spell correction
offered for “sweeeeet”. (2, 3, 4) Spell corrections of-
fered to e?, e** and e'® respectively. (5) Spell correction
offered for “weeceeeeeececeeeececeeeeeee t” (7) (6) With
two hundred es, the word is too long for Google, which
asks me to “try using a shorter word.” Thanks Google,
but I already did try the shorter ones.
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The letters across the top are the “previous letter”
and the ones across the left are the “next letter” and
the box contains the corresponding count. For exam-
ple, the pair “el” appears four times. (Pairs of letters
are called “bigrams” by nerds, some nerd-poseurs, and
Markov who I can’t tell if he was a nerd by his picture,
because he does have a pretty austere beard, but also
did a lot of math.) One of the useful things about a
Markov chain is that it lets us predict the next letter
that we might see. For example, if we see “half”, then
the column labeled f above tells us that the next letter
is twice as often an e than a u, and that no other let-
ters ever occurred. Typically we think of these as being
probabilities inferred from our observations, so we say
there’s a 2/3 chance of e following f and a 1/3 chance
of u. Now the word “lllIII” isn’t so likely any more, be-
cause there’s only a 1/4 chance of the next letter being
l once we see [.

Words are not just their interiors; it’s also important
what letters tend to start and end words. We can do this
by imagining that each word starts and ends with some
fake letters, and include those in the Markov chain.
Let’s use < for the start symbol and > for the end.
So we pretend we observed “<hello>”, “<helpful>”,
and “<felafel>". Speaking of which, could you imagine
if there were such a thing as a helpful felafel? Would
you eat it? Because then it probably can’t help you any
more, except to get fat.
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We just added these like other letters, but since the
beginning symbol < never occurs after other letters, we
don’t need a row for it (it would be all zeroes), and
similarly since no letters ever follow > we don’t need a
column for it. Now the word “lllll” is impossible because
no words start with 1.

It basically makes sense to consider the probability of
a whole word to be the chance of simultaneously seeing
each pair of letters in it, which is just the product of
all the probabilities. So the word “hel” is 2/3 (for <h)
x 2/2 (for he) x 4/4 (for el) x 2/6 (for 1>), which is
0.222. These are the most likely words overall (I discuss
how to generate such lists in Section 2.2):

22.2%  hel 2.5%  helpfel

11.1% helo 2.5% helafel
7.4%  fel 1.9% fulo
3.7% hell 1.9%  hello
3.7% felo 1.2% fell
3.7% ful 1.2% helafelo

This is pretty good. These words resemble the ones
we observed to build the Markov chain, but are novel.
I think helafelo is a pretty rad word, right?

The next step is to build a Markov chain for a list
of real words and see what results. I built one for the
SOWPODS word list, which results in the table in Fig-
ure 6. These are the most likely words, with real words
filtered out:

499% s 017% vy
1.75% d  017% p
0.95% ¢  0.16% a
0.55% ¢ 0.16% n
043% r 0.15% ps
0.42% t 0.13% ms
0.40% e 0.13% ts
0.35% m 0.13% ds
0.32%  ss 0.11% hy
0.20% s 0.11% k
0.19% h  0.11% ng
0.18% 1 011% ly

Ugh, poop city! Actually, it turns out that when you
see enough words, you see enough pairs that all sorts of
junk looks likely. For example, “ng” is easily explained
by many words starting with n, ¢ often following n,
and many words ending with g. Even though each pair
makes sense, the whole thing doesn’t look like a word,
because we expect to at least see a vowel at some point,
for one thing.
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Figure 6: Markov chain for the SOWPODS word list,
where darker squares indicate higher probability. The
darkest is the transition from ¢ to u (98%), which is not
surprising.

There is a standard solution to this problem, which is
to generalize the Markov chain to keep more than one
letter of history. So instead of just tallying how often g
follows n, we count how often g follows in (and any other
pair of letters)!? This makes the table pretty large, so
you’ll just have to look at Figure 6 again and imagine
it being 28 times wider. But the good news is that it
invents much better words:

12The details are straightforward, except possibly that we now
imagine each word to start with two (or in general, n) copies
of the start symbol, so that we see “<<helpful>”. The column
corresponding to the history << tells us the frequency of letters
that start words, and for example the column <h tells us the
frequency of letters that follow h when it appears at the start of a
word. We do not need to repeat the ending character > because
once we see it, we never do anything but end the word.

Markov chain with n = 2.

.709%  ing 110%  le
248%  ses 107%  der
169%  des 107%  ove
.154%  nes 101%  gly
.140%  sts .088% hy
A31%  se .085% ung
128%  ings .083% cy
126%  ded .081%  pres
A17%  cal .080% pers

These are even, like, pronounceable. The best news is
that they keep getting better the more history we keep:

Markov chain with n = 3.

.109%  des .038%  ent
.078% pers .036%  dist
.076% cal .035% Dble
.062% pres .035% ches
.045% nons 034%  gly
.044%  ress .034% inted
.042% ing .034%  dists
.040% pred 033% lity
Markov chain with n = 4.
.045% unders .017%  heters
.034% dising .016%  sters
.029% pers .015%  stic
.028%  cally .014% pering
.023% inted .013%  dises
.020%  heter .013% ching
.019%  tric .012%  shing
.018%  ster .012%  dest
.018%  hier .011% teless
.018% unded .011%  resis

Markov chain with n = 5.
GetTempFileName failed with error 5

With four letters of history, the words produced are
quite good! (The results at n = 5 are somewhat disap-
pointing since the program crashes from running out of
memory. The table at n = 5 would have over 481 mil-
lion entries.) Many of these seem like real words. Some
even suggest meaning because they contain common
morphemes. To make the case that these are not just
real-looking words but characteristic of the English lan-
guage, compare the results of the same algorithm on the
dictionary from the Italian language edition of Scrabble,
which is probably called Scrabblizzimo! (Figure 8). Ital-
ian is lexicographically a more compact language than
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Figure 7: Markov chain for the Italian language. Again
darker cells indicate higher probability. Italian has more
lexicographic structure recognizable from bigraphs than
English does: Note that the extremely rare letters “j”,
“k”, “q”, “w”, “x”, and “y” have almost empty rows.
“z” very frequently follows “z”, as in pizza. Words al-

most always end in a vowel.

English (Figure 7); there are only 21 letters (outside of
occasional interlopers in loan words like jeans and tazi).
Moreover, even though the dictionary contains 585,000
words (twice as many as English), the probabilities of
observing these non-words are much higher than the
most likely English ones.

2.1 Usage-weighted methods

One criticism of this approach is that it considers ev-
ery word in the word list to be equally important!® I
object on the philosophical grounds that some words
that already exist ought to exist more than other words
that already exist. For example, congenital is a much
nicer word than the plain ugly congenial, and is reflected
by the fact that congenital is used five times more fre-

131n fact, the common part of words with many different con-
jugations is in essence counted many times. This means ornithol-
ogy in its six different forms contributes six times as much to our
model as the word the!

137%  ammo .026% rino
071%  rice .025%  diste
.061% rico .024%  risti
.055% este .023%  disci
.053% scono .022%  riasse
.049%  immo .022%  riassi
.047%  assero .021% cate
.047% scano .019% rite
.038% rammo .019% cando
.034% cata .018% riassero
.034%  assimo .018% riassimo
.032% riate .018%  dete
.032%  disce .018% disca
.030% esti .017%  risca
.029% rica .017%  cente
.028% endo .016% acci
.027%  dissimo .015% centi
.026%  rici .015%  girono

Figure 8: Most probable words induced by the Markov
Markov chain for the Italian language (n = 4).

quently than congeniall* In this section, we produce
Markov models of words weighted by the frequency with
which people tend to use them. This is just a simple
matter of training the model on some natural language
corpus (with many occurrences of each word, or no oc-
currences of unpopular words) rather than a flat list of
all alleged words.

Facebook. Since the best research is intensely navel-
gazing, I started by analyzing a corpus of my own
writing, specifically my Facebook status updates since
March 2006. There were 1,386 status updates contain-
ing such jems as “Tom Murphy VII thinks mathfrak
is straight ballin” and “Tom Murphy VII global L_50
reused for unused_36166!!". The most likely words with
n=4:

1414,200,000 times to 2,820,000, on the Internet, according to
Google.



My Facebook status updates, n = 4.

.252%  pittsburgh .097%  can’t
.209%  steelers .083% i'm
.209%  sfo .083% icfp
195%  it’s .083% app
.125%  bdl 069% x
111%  sigbovik .069%  drunj
.109%  facebook 069% g
.097%  mic .061%  ther
097% s .055%  doesn’t

This is the worst. Not only does it contain loads of
one-letter words that we have already determined are
verboten'® but the rest are just non-words that I tend
to use like the names of cities, prestigious conferences,
or TATA airport codes. The main problem is that there
is simply not enough data from which to generalize.

Wikipedia. I tried again, but with Wikipedia, using
a snapshot of the English site from June 2009. This
is 23 gigabytes of data, most of it expository text com-
posed by native speakers, plus bathroom humor vandal-
ism. The list produced by this analysis is much better,
though it contains artifacts from non-English Wiki lan-
guage used in articles. The unabridged list appears in
the appendix; my hand-selected favorites:

English Wikipedia, n = 3.

.0287%  smally .00518%  reporth
.0156%  websity .00484%  delection
.0156% stude .00459%  grounty
.0124%  chool .00437%  betweek
.0120% fontry .00431% fination
.0102%  undex .00388% manuary
.0099%  octory .00360%  whicle
.0096%  coibot .00262%  stategory
.0084%  footnot

Lots of these could be the names of tech startups or
Pokémon.

2.2 Coining words with coinduction

In the earlier sections I blithely produced tables of the
most probable words according to an n-Markov chain.
It is not obvious how to do this (or that it is even possi-
ble), so I explain the algorithm in this section. It’s safely
skippable, I mean if you don’t want to know about a

15Note that since n = 4 these words have to actually appear
in status updates to have nonzero probability for this list. “g” is
explained by frequent occurrences of “e.g.”, for example.

pretty cool algorithm that’s not that complicated and
might even be new, plus dual math.

Computing the probability of an individual word is
easy. We prefix it with n copies of the start symbol <,
suffix it with a single >, and then look up the probability
of each symbol given its n preceding symbols in the
table, and multiply those all together. We can compute
the probability of any word this way. The problem with
sorting all of the possible words by their probabilities is
that there are an infinite number of them. We can’t just
look at short words first, either, because for example
the word “thethethe” is many times more likely (p =
6.08 x 107!1) than the shorter “qatzs” (9.07 x 10712).

The solution is to use coinduction. Most people re-
member induction from school, maybe, which is the one
where you have some base case like “0 is even”, and then
you prove that all numbers are either even or odd by as-
suming “n — 1 is even or odd” and proving “n is even
or odd”. From this we conclude that every number is
either even or odd. The idea is the proof shows how to,
for any given number m, count down to the base case “0
is even”, and then repeatedly apply the n — 1 step (in-
ductive step) to get back up to m. This is a great way
to prove facts about finite things like numbers. Think
of induction as a way you prove a statement like “Good
to the last drop,” or “There’s always room for Jello.”

Coinduction is a good proof technique for infinite
things, like a sorted infinite list of possible strings. The
idea behind coinduction is kind of like, you prove some-
thing like “0 is a number” (the base case), then prove
something like “if n is a number, then n 4+ 1 is a larger
number”, and then conclude that there exists an infi-
nite series of numbers, each larger than the previous
one. Think of coinduction as a way you prove a state-
ment like “Once you pop, you can’t stop,” or “Never
gonna give you up.”

To sort the infinite list we don’t actually use coinduc-
tion (we’re not going to prove anything, just implement
it), but its computational counterpart, corecursion. I
just can’t resist the “coin” pun.

What we do is define a function “most probable
paths”, which returns a (possibly infinite) stream of
strings for a given starting state. Fach string is finite
and ends with the terminal symbol >, and they appear
sorted by decreasing probability. (The most probable
words overall will be just the first elements from the
stream returned by this function when using a start-
ing state like <<< for n = 3.) Since we don’t want
to explore all possible strings in order to produce this



list (there are infinitely many), the trick is to put a
lower bound on the probability of the words that will
be included. There are always finitely many words with
probability greater than a given positive value, unless
the Markov chain contains a cycle where each edge has
probability 1. (This is impossible for Markov chains cre-
ated only by observing finite strings, such as all the ones
in this paper.) It is efficient to use a very small lower
bound with this algorithm, like 0.00000000000001.

So the specification for “most probable paths” is to
return all of the strings (that end with >) that exceed
the given lower bound in probability, sorted in descend-
ing probability order. It is easy to check the path di-
rectly to >; we compare its probability to the lower
bound by just looking it up in the table, and consider
it if it exceeds the lower bound. For any other symbol
sym, we will proceed (co)recursively: Call the probabil-
ity of seeing sym next p, and then compute tails, all of
the most probable paths starting in the state we would
be in upon seeing sym. We turn tails into the sorted
stream for the current state by just adding sym to the
beginning of each string in it, and multiplying the prob-
ability by p. It remains sorted because multiplying by
the same p is monotonic. The most important thing,
which makes the algorithm practical (indeed terminate
at all), is that we pass in a new lower bound: The cur-
rent lower bound divided by p. After all, the outputs
will be multipled by p, so they have to exceed this in
order to meet the lower bound. This tends to increase
the lower bound (sometimes over 1) since probabilities
are between 0 and 1. This way, we only need to search
a few symbols deep before it’s clear that no string can
exceed the lower bound.

Now we have a list of sorted streams, at most one
for each symbol in our alphabet. It is fairly straightfor-
ward to merge these into a single sorted stream, by only
looking at the first element from each one. Pseudocode
for most_probable_paths appears in Figure 9 and for
merge_sorted in Figure 10. Performance of this code
is great; building the Markov chains (or even just read-
ing the dictionary files) dominates the latency of the
analyses in this paper.

3 Special cases

The empty string?? Is that a word? Could it be? Dude
that is blowing my mind.

4 Backformation

The lexicon is generative, in the sense that it’s possible
to make new words that are generally acceptable, by
following rules. Most people recognize pluralization of
nouns by adding —s (even for novel words), or adding
prefixes like anti—. We could investigate words that
ought to exist by the application of rules, such as ez-
amplelikelikelikelikelikelike, but I see no straightforward
way to justify the relative strength of such words.

A related way for words to enter the lexicon is by
backformation. This is the reverse of the above pro-
cess: A word like laser (initially an initialism) is legal,
and then by running the rules of English backwards,
we start to use lase as a word (the verb that a laser
most frequently applies). In this section, I attempt to
determine formation rules in English (by simple lexical
analysis of the set of legal words) and then run these
rules backwards to find words that seemingly should al-
ready exist.

Prefixes and suffixes. The first order of business is
to find prefixes and suffixes that are usually modular.
The kind of thing we’re tring to find are “anti-” and “—
ing”; stuff you can often add to a word to make a related
word. The approach is straightforward. For each word,
consider splitting it at each position. For dealing, we
have d/ealing, de/aling, etc. For every such split, take
the prefix (e.g. “de”) and remainder (“aling”); if the
remainder is still a legal word, then the prefix gets one
point. aling is not a word so no points here for “de”. We
also do the same thing for suffixes (using the exact same
splits, symmetrically). In this case we’ll only get points
for “~ing” since deal is a word. Every time a prefix
or suffix appears we test to see if it is being applied
modularly, and the final score is just the fraction of
such times. Here are the ones with the highest scores:

1.000000000 -zzyingly 1/1
1.000000000 -zzying 1/1
1.000000000 -zzuolanas 1/1
1.000000000 -zzuolana 1/1
1.000000000 -zzotints 1/1
1.000000000 -zzotintos 1/1
1.000000000 -zzotinto 1/1
1.000000000 -zzotinting 1/1

Well, it’s good to know that 100% of the time, you
can remove “—zzotinting” from a word and it will still

be a word. But this inference is supported by just one



fun most_probable_paths { lower_bound : real, state : state }
{ string : symbol list, p : real } stream =
let
fun nexts i =
case symbol_from_int i of

NONE => nil
| SOME sym =>
let
val p = (* probability of seeing sym in this state *)
in

if p < lower_bound
then nexts (i + 1)
else if sym = end_symbol
then S.singleton { string = nil, p = p } :: nexts (i + 1)

else
let
val 1b’ = lower_bound / p
val tails =
most_probable_paths { lower_bound = 1b’,
state = advance_state (state, sym) }
in
(* Now multiply through the probabilities and add the symbol
to the head of the strings. *)
Stream.map (fn { string = t, p = p’ } =>
{ string = sym :: t, p=p * p’ }) tails ::
nexts (1 + 1)
end

end
(* Try all next symbols. *)
val streams = nexts O
in
S.merge_sorted bysecond real_descending streams
end

Figure 9: Pseudocode for most_probable_paths. advance_state gives a new state from a previous state and
symbol observed, so that for example advance_state(abc, z) gives bcz. The pseudocode for merge_sorted is
given in Figure 10.
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fun merge_sorted cmp 1 =
let
fun ms nil () = Nil
| ms (s :: t) O =
case force s of
Nil =>ms t O
| Cons (v, ss) =>
ms_insert v [ss] t
and ms_insert bv sg nil =
Cons (bv, delay (ms sg))
| ms_insert bv sg (s :: t) =
case force s of
Nil => ms_insert bv sg t
| Cons (v, ss) =>
case cmp (bv, v) of
GREATER =>
ms_insert v (singleton bv :: ss :: sg) t
| _ => ms_insert bv (s :: sg) t
in
delay (ms 1)
end

Figure 10: Pseudocode for merge_sorted. ms merges a sorted list, and ms_insert is a helper where we have a
candidate best value bv which will either be the one we return at the head of the stream, or we’ll replace it and
then stick bv somewhere to be returned later. (This algorithm can be improved by making a data structure like
a (co)heap; this is just a simple first pass.)

observation (the word mezzotinting); there are actually 1.000000000 -worms 69/69
hundreds of such unique prefixes and suffixes. We need 1.000000000 -worm 69/69
a better list!® Removing the ones that appear just a 1.000000000 -working 21/21
single time doesn’t really help that much:
Much better! But the next step is going to be to try

1.000000000 -zzazzes 3/3 removing these prefixes and suffixes from words that

1.000000000 -zzazz 3/3 have them, to find new words. Since these have mod-

1.000000000 -zzans 3/3 ularity of 100%, we already know that every time we

1.000000000 -zzanim 2/2 apply them, the result will already be a word. So they

1.000000000 -zzan 3/3 are useless for our analysis. Here are the most modular

1.000000000 -zygotic 3/3 prefixes and suffixes with modularity strictly less than
1.

Still bad. Let’s turn up the juice to prefixes and suf-

fixes that appear at least 10 times. 0.985714286 -makers 69/70
0.985714286 -maker 69/70
1.000000000 -wrought 10/10 0.983606557 -wood 120/122
1.000000000 -writings 12/12 0.983471074 -woods 119/121
1.000000000 -wraps 10/10 0.982758621 -down 57/58
1.000000000 -wrap 11/11 0.982658960 -works 170/173
16The right thing to do here is probably to use binomial like- 0.981818182 -houses 108/110
lihood rather than the scale-independent fraction. But simpler 0.981818182 -house 108/110
approaches produce pretty good lists. 0.981132075 kilo- 52/53
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0.980752406 -less 1121/1143
0.980743395 over- 2190/2233
0.980000000 -books 49/50
0.980000000 -book 49/50
0.979591837 -proof 48/49
0.979310345 -lessnesses 142/145
0.979069767 -ships 421/430
0.978723404 -lessness 184/188
0.978723404 -board 138/141
0.978494624 -woman 91/93
0.978021978 -women 89/91
0.977528090 -ship 435/445
0.977272727 -manship 43/44
0.976744186 -weeds 84/86
0.976470588 after- 83/85
0.976190476 -manships 41/42
0.976190476 -making 41/42
0.976190476 -craft 41/42
0.976190476 -boats 41/42
0.976190476 -boat 41/42
Wow, now we’re talking! The single word that cannot
have “~maker” removed is comaker, suggesting that co

should be word (noun: “What a comaker makes.”).

Given this list, the next step is to identify potential
words that can be backformed by removing prefixes or
adding suffixes from existing words. Such a string can
often be found via multiple prefixes and suffixes. For
example, twing can be formed by removing “-ing” from
twinging (a false positive, since the root word is actually
twinge in this case) as well as by removing the prefix
“lef-”, which has modularity of 20% (including splits
such as “lef/tie”). Maybe not good justification, but
twing is a pretty good word anyway.

We define the probability of a word as its Markov
probability (with n = 4, as this seems to produce the
best results), times the probability that at least one of
the potential backformation rules applies!” Here are
the most likely words by backformation:

word prob most likely backformation rules
dises .023% para- (0.42) fluori- (0.39)
melo- (0.35) bran- (0.31)
tring  .020% hams- (0.36) scep- (0.35)
bows- (0.33) hearts- (0.29)
disms .017% triba- (0.31) drui- (0.30)

bar- (0.27) invali- (0.27)

17 As above we only allow backformation rules that have at least
10 occurrences, to prevent degeneracy.

ching  .017% day- (0.86) hot- (0.69)
star- (0.51) guillo- (0.50)
sking  .017% dama- (0.24) imbo- (0.18)
fri- (0.18) atta- (0.17)
cally  .015% anti- (0.78) specifi- (0.61)
magnifi- (0.55) phoni-
pring  .015% days- (0.67) heads- (0.62)

outs- (0.54) ups- (0.51)

I think that this approach shows promise, but there
appear to be a few problems: Many of these “rules” can
be explained by bad segmentation (“heads—" appearing
to be modular, for example, is really just “head—" plus
“s” being a common letter.) Second, I believe the dis-
junctive probability of any rule applying is too naive
for determining the score. For example, tions has al-
most a thousand different prefixes that could apply to
it; the chance of any one of them applying is very nearly
1. But this is actually because “tions” is just a com-
mon way for a word to end. Legitimate root words to
which many good prefixes are applied cannot be easily
distinguished from common suffixes by this symmetric
algorithm. More work is called for here.

5 Survey

On occasion I have been accused of “overthinking” prob-
lems, whatever that means. So to compare, I next haz-
arded a tried and true technique from grade school, the
survey.

I asked a few people who happened to be around,
“What word ought to exist?” Most people did not know
what to make of this question, and also, because people
seem to revel in the opportunity to get (well deserved)
revenge on me by being disruptive trolls, many of the
answers were designed to be unusable. In order to not
reprint everyone’s bullshit—but not introduce bias by
selectively removing data—I discarded random subsets
of the data until it did not contain bullshit any more.

Rob: etsy, nuuog
Chris: nurm
David: wafflucinations
Lea: hnfff
Reed: pansepticon
Jessica:  gruntle

From this we can conclude that 16% of people wish
nurm were a word, and so on. These words did not come
with definitions, except for gruntle, which Jessica gives
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as “the opposite of disgruntle”. This is actually already
a word, but it was the inspiration for Section 4. etsy
is the name of a popular on-line crafts community so I
don’t know why Rob would suggest that. The meaning
of wafflucinations is clear from morphological analysis.

6 Conclusion

In this paper I investigated several different ways of an-
swering the question: What words ought to exist? Each
method produces different words, and some don’t work
that well, but nonetheless we have several rich sources of
words, each time scientifically justified. I conclude with
a section of recommendations for words that ought to
exist, along with definitions.

6.1 Recommendations

Sweeeeeeeeeeeeeeeeeeet with 19 es is the clear favorite
based on analysis of usage, so this one should be intro-
duced. It means “Really sweet.”

Rane sounds too much like rain, but sare has a unique
pronunciation and many people seem to think it’s al-
ready a word. I propose that sare be introduced as a
noun meaning, “a word that sounds real but isn’t.”

Cho is similarly easy to pronounce and spell. I pro-
pose that it be defined as “A kind of cheese,” so that
we can really nail the new triple entendre on the clas-
sic joke. Chomaker is someone who makes that kind of
cheese.

Unders was one of the most frequently occuring words
towards the top of many analyses. This word should be
a colloquialism for underwear, which would probably
already be understood from context.

Dise is suggested by both the Markov model (as dises,
dising) and backformation (as dises). I like thinking
of it as being the root of paradise, where para— means
something like “along side of” or “resembling”. So dise
is the place you're really looking for when you get to
paradise and realize it’s just a mediocre country club.

Helafelo is one hell of a fellow.

Addendum. During the preparation of this paper,
the Scrallbe game has converged on a culture where the
words played are real-seeming, with creative definitions.
Examples: frodeo (“Gandalf is the clown.”) pridefaz
(“An unproven treatment for telephone anxiety.”) eceee
(“eeeee”) orzigato (“Move mr. roboto. for great jus-
tice.”) stovebed (“Now you don’t have to get out from
under the covers to make breakfast.”) ovawiki (“The
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free egg cell that anyone can edit.”) gaptave (“Two
discontinuous musical intervals.”) achoolane (“Nostril
(colloq.)”) gplerious (“Completely overcome by soft-
ware licenses.) bestcano (“Some eruptions are better
than others.”) Thanks to the players for their contribu-
tions, especially Ben Blum, Chrisamaphone, Rob Sim-
mons, and Flammin Fingers.

Appendix

Here are the most likely words induced by the English
Wikipedia, with n = 3. T have left off the probabilities;
they can be reproduced by downloading Wikipedia and
running the software yourself, which only takes like 9
hours.
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