
New results in k/n Power-Hours

Dr. Tom Murphy VII Ph.D.∗

1 April 2014

Abstract

We correct for inebriated missteps, using computa-
tional methods to establish new bounds in generalized
k/n Power-Hour theory.

Keywords: generalized binge drinking, maths, finite-state

automata, abstract interpretation

Introduction

A 2012 paper by Blum, Martens, Murphy, and Lovas[1]
introduced the k/n Power-Hour, a fractional variant on
the well-known drinking game. In a traditional Power-
Hour, participants drink one shot of beer per minute
for 60 minutes. Since 5–6 beers in an hour sometimes
have adverse effects, some players opt for an attenu-
ated version of the game wherein fewer than 60 shots
are consumed. However, since the game is frantic and
played simultaneous with others, it is critical to have
a mechanical procedure for performing the attenuated
Hour. The framework by Blum et al., hereafter BMML,
gives a handful of simple operations that can be used to
define a state machine among p players:

• At the beginning of each minute, each player has
at most one shot glass in front of him or her

• The shot glass must be in one of three states: Filled
], empty ∪, or overturned ∩

• Atomically, each player performs an action based
only on the state of his or her cup. If not in pos-
session of a cup (written ∪), the only action is to
do nothing. With a cup:

– The player may drink
+

⇒, or not drink ⇒
∗Copyright c© 2014 the Regents of the Wikiplia Foundation.

Appears in SIGBOVIK 2014 with the chagrin of the Association
for Computational Heresy; IEEEEEE! press, Verlag-Verlag vol-
ume no. 0x40-2A. U0.00

– The player may pass the cup in any state to
any player (a fixed player per action)

– However: If the cup is filled and the player did
not drink, it must be passed in the filled state

– A player may not receive more than one cup
in the same round

Every assignment of rules and starting condition to
p players yields a deterministic outcome, though some
of these are illegal (because they result in two or more
cups being passed to the same player in some round).
For legal games, the outcome is that the p players have
consumed ki shots of beer where 1 ≤ i ≤ p and 0 ≤
ki ≤ 60. For the traditional power hour, the player
starts with an empty cup, at each step drinks,1 leaves
the cup empty, and passes to herself.

While the authors made a mostly clear definition of
BMML and presented some initial results, these results
contained multiple serious errors and the paper abruptly
switches notation and assumptions several times, and
rambles incoherently. By their own admission, the au-
thors were drinking while they wrote it, taking only one
hour to do so. Don’t drink and derive, kids!

This paper revisits the problem of BMML from a
modern, sober perspective, clarifies some of the orig-
inal results, and presents several new ones and a few
conjectures. It is based on several pieces of software,
whose source is available online.2

1 One-player k/nPower-Hours

The goal of the k/n Power-Hour is to attenuate the num-
ber of drinks consumed by the p players, and its expres-
sive power comes from the ability to encode some state
in the orientation of the cups, and propagate that state
via passing them from player to player. Even without

1In practice, this is done by filling the cup and then drinking
it.

2http://sourceforge.net/p/tom7misc/svn/HEAD/tree/

trunk/powerhour/



passing cups, the ability for a single player to attenuate
his drinking is nontrivial. Playing drinking games alone
is sad indeed, but the solo k/n Power-Hour still has prac-
tical applications. When playing a Power Hour with
others, if each player’s desired k is attainable through
solo methods then there is no need for passing cups,
which simplifies the ergonomics considerably. A com-
mon case is where some of the players would like to do
half–Power-Hours, which is easily achieved in BMML
by transitioning ∪ to ] without drinking and ] to ∪ by
drinking, and passing to oneself.3

A full list of attainable k/n Power-Hours where
p = 1 appears in Figure 1. Possible values
of k are {0, 1, 2, 20, 29, 30, 31, 40, 58, 59, 60}. The
BMML paper claimed that the possible values were
{0, 1, 2, 20, 30, 40, 58, 59, 60}, describing 31 for example
as “super impossible.” Achieving 31 is somewhat inter-
esting. One way to do it is to start with ∪, and use the
rule that ∪ means drink and then fill the cup. We then
use the rule that ] means drink and flip the cup, and ∩
means don’t drink and fill the cup. Essentially we use ∪
to mean “this is the very first state” and then take shots
on alternating minutes by using ∩ and ] to encode the
parity. Exploiting non-steady-states like this (Figure 1)
is how we achieve k that does not share many factors
with n.

Figure 1: State machine that achieves k = 31 in a solo
BMML Power Hour. + on an edge means the player
drinks. The disembodied incoming edge is the start
state. The player always passes to herself.

It is tractable to work out the possibilities for the solo
case by hand, though apparently not while drinking [1].
These results were generated by a computer program,

3There are many variations, but this was the strategy used
many times in practice before being generalized to BMML.

which is probably necessary for p > 1. In the remainder
of the paper, I’ll describe several different approaches
for exploring this space, and generalizations of it, com-
putationally.

k start rules
0 ∪ ∪⇒?, ∩⇒?, ]⇒?

1 ∪ ∪
+

⇒∩, ∩⇒∩, ]⇒?

2 ∪ ∪
+

⇒], ∩⇒∩, ]
+

⇒∩
20 ∪ ∪⇒∩, ∩⇒], ]

+

⇒∪
29 ∪ ∪⇒∩, ∩⇒], ]

+

⇒∩
30 ∪ ∪

+

⇒∩, ∩⇒∪, ]⇒?

31 ∪ ∪
+

⇒], ∩⇒], ]
+

⇒∩
40 ∪ ∪

+

⇒∩, ∩⇒], ]
+

⇒∪
58 ∪ ∪⇒∩, ∩⇒], ]

+

⇒]
59 ∪ ∪⇒∩, ∩

+

⇒∩, ]⇒?

60 ∪ ∪
+

⇒∪, ∩⇒?, ]⇒?

Figure 2: All the possible k for a solo Power-Hour in
BMML. A superscript + means that the player drinks.
The symbol ? means that any cup state can be used
in that position. Note that 29 and 58 require wasting
a shot of beer (the game ends with the shotglass full);
all the others but 31 permit a variant where a shot is
wasted as well. We do not concern ourselves much in
this report with these leftover shots.

2 Two-player k/nPower-Hours

For more players, the number of possible configurations
explodes. Let’s make the following definitions to bound
the size:

• t = 4, the number of starting states (], ∪, ∩, ∪)

• a = 2 × p × 3, the number of actions given a cup.
The player can drink or not drink, pass to any
player, and in 3 configurations (], ∪, ∩)

Then the number of configurations is bounded by (t ×
a3)p. For p = 1 this was just 864. For p = 2 it is
47,775,744; for p = 3 it’s 12,694,994,583,552, already
beyond the limits of straight enumeration.

However, this is just an upper bound. For one thing,
the base of the exponent is actually bounded by

t× a2 × afilled



where afilled = (p×3)+p (the actions that can be taken
on ], where if the player does not drink, then he must
pass the cup ]).

The values for p ∈ {1, 2, 3} are still 576; 21,233,664;
3,761,479,876,608. There are a few other simplifications
possible. Many of these games are illegal because they
result in multiple cups being passed to the same player
in some turn. These are difficult to exclude analytically,
but there are some sufficient conditions; for example, if
two players pass to the same player no matter their in-
put state, and every player starts with a cup, then their
cups always collide. There are also many games that
are isomorphic. For one thing, ∪ and ∩ are not dis-
tinguished in the rules at all, so any two configurations
where these are simply swapped has the exact same out-
come. Likewise for permuting the players.

21 million configurations is no big deal for a modern
computer. A simple SML program computes all of the
configurations and runs them; ones that are found to be
illegal are rejected. (It implements the first simplifica-
tion having to do with ] when generating the configura-
tions, since it can be done statically.) All of the possible
outcomes are shown as black squares in Figure 3.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Figure 3: All of the possible outcomes (k) for the two
players in a BMML Power-Hour. The matrix is sym-
metric, of course, since the players are interchangeable.

Each cell represents a pair of 〈k1, k2〉 for the num-
ber of shots imbibed by players 1 and 2. 454 of the
612 = 3721 combinations are achievable. Note that col-
umn 0 represents the case where player 1 drinks noth-

ing. It dominates the matrix in the sense that if 〈k1, k2〉
is achievable, then 〈0, k2〉 is as well. Most of the time
it is easy to see how this is done: Take the configura-
tion that produces 〈k1, k2〉 and do the same, but player
1 simply performs her actions without drinking. This
works except for the case where player 1 receives a ]
and passes it in a state other than ]. The player can’t
simply not drink, as this is illegal (the beer must be
emptied, and BMML does not permit such messy reduc-
tions). It is curious that this does not affect the result;
I discuss this further in Section 7.2. Another interest-
ing column is the last one, which represents outcomes
of the form 〈60, k2〉, where the first player achieves a
full Power-Hour. This of course includes all of the k2

achievable solo (the players can just do their thing with-
out interacting). But some new k are now achievable:
{3, 4, 15, 28, 32, 45, 56, 57}. Interacting with a player do-
ing a full Power-Hour still affords us a few additional
bits of information that can be used to attenuate the
other player’s consumption. The solution for 45 is in-
structive, and appears in Figure 4.

This is a useful result, but it may be the case that
someone wants to drink exactly 27 shots of beer, which
is not possible with just two players in BMML. There
are two avenues to explore: Adding more players, and
generalizing BMML. We begin with the three-player
case.

3 Three-player k/nPower-Hours

With 3.7 trillion possible configurations, enumeration
is not feasible. But as we observed before, many of
these combinations are illegal (they result in a player
recieving two cups), and many are isomorphic to one
another. By being clever about how we explore the con-
figurations, testing “all” the three-player configurations
becomes feasible.

Here is a one-player BMML configuration
that illustrates a particular kind of redundancy:

start ∪ ∪
+

⇒∪ ]
+

⇒∩ ∩⇒]

The cup starts empty, and at each step the player
fills it and drinks (traditional Power-Hour). The player
also has rules for the case that she observes a full or
overturned cup. It does not matter what these are
because they can never be used. This example is
trivial, but there are many ways that the execution
of a configuration can be indifferent to some of its
content. Another is a two player configuration like



Figure 4: State machine that achieves 〈k1 = 45, k2 =
60〉 in a two-player BMML Power Hour. The bottom
row of states are for player 1, who drinks 45, and the top
for player 2, who drinks 60. Clearly, player 2 must drink
at every step. The players always pass to each other,
with the two cups exchanging hands each turn. The
cycles for the two cups are disconnected; one alternates
between ] in player 2’s hand and ∪ in player 1’s (cycle
of length 2), drinking on each turn. This cycle yields 30
drinks for each player. The other cycle is of length 4;
player 2 drinks on every step (as we know), and player
1 every 4th step, yielding 15 more drinks for a total of
45.

player 1 start ∪ ∪
+

⇒∩@1 ]
+

⇒∩@2 ∩⇒]@1

player 2 start ∪ ∪⇒∪@1 ]
+

⇒∩@1 ∩
+

⇒]@2

where the @n notation means to pass the cup in that
state to player n. In this case, the first thing the
players do is to pass both of their cups to player 1,
which is illegal and ends the game. Again, none of the
other rules are ever used.

In order to explore what is possible in three-player
games, we exploit this redundancy with a technique like
abstract interpretation [2]. The start state is always
used, so we begin by enumerating all assignments of
start states to players. There are only 4p. Every other
rule starts out undetermined, maybe written like this:

start ∪ ∪
?

⇒? ]
?

⇒? ∩
?

⇒?

Now we execute programs as before, and hope that
we never encounter a situation where we depend on a
rule. If we finish without ever using one of the ? rules,
we evaluated a potentially large group of configurations

all at once. During the execution of a configuration, if
we need to use a rule that is currently marked ?, we
explore all of the possibilities for that spot. This is
accomplished by a loop that looks like the following (in
Pseudo SML):

val queue = (* all abstract configurations *)

val results = (* map from (k_1, k_2)

to example *)

fun loop nil = (* done *)

| loop (h :: t) =

let

val res = evaluate h

in

insert (results, res);

loop t

end handle Expand l => loop (l @ t)

fun evaluate config =

(* ... *)

case rulefor cup of

QuestionMark =>

raise Expand expandedconfigs

| (* ... *)

val () = loop queue

The key trick here for keeping the code under control
is to iteratively evaluate the configurations as usual, but
if we find a ?, then we abort the current simulation with
an exception that carries along the set of configurations
that expand the current one in just that position. This
wastes some work (and we often need to restart multiple
times per abstract configuration), but not much: If a
rule is used at all, it is usually used in one of the first
few rounds.

With this technique, we can simulate all possible two-
player games with just 15,744,259 game-minutes simu-
lated (with naive enumeration it would be 1.2 billion)
in less than 2 seconds on a crappy old computer.

It is also feasible overnight to enumerate all three-
player games. The results are three-dimensional, of
course, but we can display the outcomes for two of the
players in the familiar presentation (Figure 5). Note
that 〈k1, k2, k3〉 is achievable for any k1 ∈ {0 . . . 60},
k2 ∈ {0, 1, 2}, and some unknown k3 (projected out
of this display). This is a significant improvement over
what was achievable in BMML with two players. It sug-
gests that with enough friends willing to follow a pro-
gram, some set of people are likely to be able to achieve
any amount of drinks between them (if they have the
ability to construct the right rule set!); see Section 7.2.



Figure 5: Outcomes possible for the first two players in
all different 3-player power hours (black), overlayed by
all possible outcomes outcomes for 2-player power hours
(red). Mainly included because it looks pretty sweet.
The outcomes that are possible with three players are a
superset of those with two, which is intuitive: We can
add a third player to any game who just does nothing.

The sheer number of configurations for 4 or more
players makes these exact enumeration techniques in-
feasible. However, we have other avenues for general-
ization (and exploration), which are investigated in the
next chapter.

4 Generalized BMML

Like any drinking game, there are several arbitrary
things about BMML. While we will not tamper with its
essence (for example, allowing beer to be spilled from a
cup without drinking it), there are some other variables
to adjust. The most naturally flexible is the number of
cup states. We will always have ], a cup with beer in
it. In BMML we also have ∪ and ∩. But why not ⊃
(cup turned on its side, facing west) or

∧
∪ (an upright

cup with a cocktail umbrella on it)?
We define BMsL, where s is the number of distinct

cup states. By convention, the 0th cup state will be the
filled cup ] since it has special rules. The remainder
will be ∪i for i ∈ {1, . . . , s− 1}. BMML is BM3L where
we’ve just renamed ∪ to ∪1 , and ∩ to ∪2 .

Clearly, more cups give us more expressive power,

0
1
2
3
4
5
6
7
8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Cu
p 

st
at

es

Figure 6: Possible outcomes for BMsL with a single
player. The vertical axis shows an increasing number of
cup states, and the horizontal axis shows the achievable
values of k drinks. With no cup states, it is only possible
to drink nothing. By convention, the 0th cup is the
special “filled” state, so it is only possible to drink on
every turn (60) or never (0). As we add more cup states,
the number of achievable states strictly increases; with
8 cup states we can drink any amount. 7 and 53 drinks
are the most elusive, and can only be done with 8 cup
states.

and should allow us to reach more outcomes. To il-
lustrate, recall the construction of k = 31 in the solo
BM3L game (Figure 1). It has a length-2 cycle alter-
nating between two cup states, where the player drinks
on every other turn. The third state is just used once as
a drinking lead-in to make the total 31 rather than 30.
With an additional cup state, we can straightforwardly
transform this into a game with an outcome of k = 32
by extending the prelude with another state where the
player drinks. Of course, the expressive power is not just
limited to such extensions; we now can create cycles of
new lengths, admit the possibility of more disconnected
cycles, and so on.

It is easy to enumerate the 1-player BMsL games.
These appear in Figure 6. The interesting range for s
is {1 . . . 8}.4 At 8 cup states, the player can achieve any
amount in a solo game. Importantly, this extends to
any number of players in BM8L, because the players
can pass to themselves and not even interact.

The two-player case is much more interesting. We’ve
already enumerated all the possible outcomes for BM3L
(Figure 3). It is computationally tractable to enumerate
them for s < 6. The set of achievable outcomes in BMsL
is always contained within BM(s+ 1)L, because we can
embed a game from the former into the latter by just
never producing the additional cup state and having any
arbitrary rule for it. Therefore, we show these results
in a composite grid where more and more states are
reachable as we increase s (Figure 7).

In order to efficiently enumerate BM5L, I improved
the algorithm again. Observe that the “drink” action
associated with a rule usually does not affect anything

4It’s not clear that BM0L should be considered legal as the
rules speak of a 0th cup, but it is degenerate anyway.



Figure 7: What’s achievable for two players in a gen-
eralized BMsL game, with s ranging from 1 cup state
(darkest) to 5 (lightest).

but the final outcome. The only exception is that in the
rule for ], the player must drink if passing in a state
other than ]. Putting this aside for a moment, note that
we can just count the number of times each rule was
executed for each player, producing an s-dimensional
vector [d1, . . . , ds] for each player. That player is able
to achieve many different drink totals, specifically, d1×
r1 + . . . + ds × rs where ri is 1 if the player should
drink on that rule and 0 if not. Simulating a game this
way is even more like abstract interpretation (we leave a
concrete value free and compute a formula rather than
an integer), and allows us to evaluate many concrete
games at once. At the end, we simply plug in every
legal value for ri for each player and insert those games
into the database. This last step is where we must tend
to the exception around ]. We may not set r0 to 0
if the player ever passes ] in a non-full state. A very
close approximation would be to insist that r0 = 1 if the
rule in the ] position does not output as ], but this is
inexact, as that rule may never be executed.5 Instead,
during simulation we keep track of whether each player
ever actually passed a non-full cup from the ] state. If
so, then we force r0 = 1, which attends to this special
case.

5We may be able to argue that in that case, there always exists
another game that does not violate this condition. But I think it
is simpler to just implement the rules.

Although this makes earlier enumerations extremely
fast and BM5L quite quick, 2-player BM6L ran 26 bil-
lion concrete states overnight and made only modest
progress. In the absence of fancier techniques for reduc-
ing the state space, we must resort to different, inexact
approaches.

5 Sampling games

To establish a result like “BM5L cannot achieve
〈47, 27〉” we really need to enumerate all the BM5L
games. (Or make some ad hoc proof of the fact, which
seems quite difficult.) However, to prove an existence
result like “BM7L can achieve 〈33, 49〉” we only need
to have a single example configuration that produces
that result. Therefore, we may be able to improve our
bounds on what is possible (or generate conjectures) by
sampling random configurations.

Sampling is actually much easier than enumeration.
There is no need to leave rules abstract. It is also easy to
stop and restart because there is no state other than the
matrix of what we’ve found. I use the SML textformat

library [3] to serialize and deserialize the matrix (which
then makes it easy to generate these graphics in a sep-
arate program). There are a handful of interesting as-
pects:

Generating a random configuration. To generate
a random game, we can just fill in all of the slots (des-
tination and cup state for each rule, starting cup state)
uniformly at random. Many of these will be illegal, but
they fail very quickly at runtime; a lazy and pragmatic
way to “filter” to legal game. It is not simply a matter
of generating all the permutations on p×s nodes, by the
way. Multiple cups can pass through the same player on
cycles of different periods, as long as they do not collide
within the 60 steps, and acyclic preludes (Figure 1) are
important and useful. For a uniformly random 2-player
BM7L configuration, 29.23% (measured empirically) are
legal. However, we will see later that we do not want to
spend so much time exploring configurations where one
or both players start without a cup; these are very lim-
ited. Therefore, the configuration generator is biased
towards producing a cup in the starting states most of
the time.

Symmetry. We can get more bang for the buck by
considering some obvious symmetries. When a simula-
tion finishes and we have an outcome 〈k1, . . . , kp〉, it is
clear that any permutation of k1 . . . kp is also achievable.
We insert every permutation of the drink counts into the



database, along with the permuted example configura-
tion. Better still would be to only store the outcomes in
some normalized form (e.g. require that k1 ≤ . . . ≤ kp).

We already have exact results for two players in
BM5L, so the next uncharted territory is BM6L. The
result after apparent convergence appears in Figure 8.
The sampling procedure runs for many hours before
plateauing overnight with 95.65% of the matrix filled.
This suggests that BM6L is not universal for two play-
ers, or else the configurations for the missing cells are
extremely rare.6

This approach scales much better than enumeration
and is efficient for all sorts of generalizations (it works
best when the dimensionality is low—i.e., two players—
and the expressiveness is high—i.e., many cup states).
Since we already know BM8L is universal, the remaining
open problem is BM7L, whose results are in Figure 9.
Indeed, after more than 30 billion samples the matrix is
completely filled in; we have found an example configu-
ration that achieves every outcome. Some of these were
extremely rare, such as the solution for 〈11, 53〉 (Fig-
ure 10). In BM7L, two players can drink any amount.

6 The fractal geometry of k/n
Power-Hours

Note that all of the two-dimensional figures resemble
one another even though they are fundamentally dif-
ferent (adding players, adding states, adding random
trials). Even samples from BMML with three players
(3D projected to 2D), which is shown in Figure 11, pro-
duces a similar pattern. This suggests that the combi-
natorial problem (“what outcomes are reachable from
finite state machines that look kind of like this?”) has
some geometric structure.

Some of the patterns are easy to explain. The top-
left half of the matrix is more populous than the bottom
right, for example. This is because we can bound the to-
tal number of drinks by 60×c, where c is the number of
cups active in the game (same as the number of cups in
the starting states). The top-left half is the region where
this sum is less than or equal to 60; in two player games,
both players must start with a cup in order to get an
outcome in the bottom-right half. We also see distinct
clumps around 0, 15, 30, 45, 60; these correspond to
simple fractions (“drink every other time”; “drink three
of four times”) of 60. This is intuitive because the ex-

6This is definitely a possibility, as new cells were still appearing
after exploring tens of billions of samples. However, the gap here
seems quite large.

Figure 8: 37.1 billion samples of legal two-player BM6L
configurations. Darker cells represent outcomes that oc-
cur more often; cells that are pure white never occurred
and are likely to be unattainable. Note that the inten-
sity represents the rank of occurrence, not the magni-
tude; in actuality, outcomes like 〈0, 0〉 occur much more
often than others. 95.65% of the cells are filled.



Figure 9: 30.7 billion samples of legal two-player BM7L
configurations. Fewer configurations were sampled than
in Figure 8 because they take somewhat longer than 6-
state games to simulate, and a smaller proportion of
random games are legal. Moreover, we stop after find-
ing a solution for every cell, proving that BM7L is com-
plete! The last cells found—an earlier version of this
paper held these as open problems!—were permutations
of 〈11, 53〉 (Figure 10) and 〈49, 53〉. Note that 53 drinks
was also unattainable in a solo BM7L power-hour; this
may in some sense be the “hardest” number of shots to
drink in BMsL.

pressive power of BMML comes from the ability to form
cycles of cup states and drink on some fraction of them.
Clumps are formed around these values because of the
possibility of preludes leading into the cycles (Figures 1,
10) that either drink (adding to the total) or don’t (sub-
tracting from it). Minor clumps form as echoes between
the major ones, because a player may participate in two
cycles of different length (Figure 4).

Of course, discretization effects compound and so the
exact values of cells are not neatly predictable. More-
over, clumps interfere by overlapping; there are many
different strategies for achieving 〈33, 33〉. One way to
make the basic structure more visible is to extend the
number of minutes that the game is played for. Fig-
ure 12 shows the utterly unhealthy three-player Power
Day (BM3L). In it, the clumps become tiny dots, but
some relationship among them along lines is clear. Inte-
rior points can probably be found as linear combinations
of two of these lines; we exploit that exact structure in

0

1

2

3

5

4

6

4

0

3

2

5

6

1

+

+

+

++

+

+

+

+

+

+

Figure 10: A solution for the elusive 〈11, 53〉 two-player
BM7L power hour! This one was found after 30.7 bil-
lion outcomes sampled, making it the most rare. By the
end of the game, the two players are just passing back
and forth two cups in state 5. A long lead-in beginning
on the left-player’s state 2 spans 12 different configura-
tions (the 6 cup states for the two players) before en-
tering the length-two cycle. Both cups travel along this
lead-in, with one three steps ahead of the other. The
right player drinks on every step until reaching the cy-
cle (and then never again) for 11; the left player drinks
during the cycle plus a little extra during the lead-in for
53. This configuration is quite flexible because the two
players can make fine adjustments to their drink total
by drinking or not drinking on the lead-in rules, which
are executed just once or twice.

Section 4, in fact.
The less extreme k/n Power-Three-Hours appears in

Figure 13.

7 Conclusion

This section summarizes the known bounds for BMsL,
and states some conjectures, before concluding.



Figure 11: 490 million samples of three-player BMML
Power Hours. The cube is rotated 15 ◦ along each axis,
the top-left corner is 〈0, 0, 0〉, and the bottom right is
〈60, 60, 60〉.

7.1 Known results

1. With one player, we have exact bounds on what
is possible in the generalized case. With 8 cup
states, a single player can drink 0–60 shots. Since
each player can just play independently, this result
extends to any number of players in BM8L. With
fewer than 8 cup states, not every k can be achieved
alone.

2. With two players in BM3L or BM4L, it is not pos-
sible for one of the players to drink every k even if
the other player helps her out.

3. With two players, we know that BM5L does al-
low one player to drink any k1 if the other player
assists. In fact we can achieve any 〈k1, k2〉 where
k2 ∈ {0, 1}. No other k2 can be used universally,
though of course many other combinations are pos-
sible (Figure 7). Many pairs 〈k1, k2〉 are known to
be unattainable; this was established by exhaus-
tively testing all possible configurations.

4. Open: Can BM6L achieve all 〈k1, k2〉? Seems un-
likely, given that random exploration plateaus with
about 95.65% of the grid filled.

5. BM7L can achieve all 〈k1, k2〉. This was established

Figure 12: All possible outcomes for the first two play-
ers in 3-player power days. These are the same games as
the 3-player power hours, but at this scale makes it clear
the groupings and their sparsity in the limit. Lines plot-
ted from 〈0, 0〉 to 〈60, k2〉 and 〈k1, 60〉 show significant
structure, but don’t explain some of the interior points.
These are probably games where a player participates
in two cycles of different periods.

Figure 13: 6,456,764,116 samples of two-player BM7L
Power Three-Hours.



by sampling random games until we found an ex-
ample for every 〈k1, k2〉.

6. With three players in BM3L, one player can drink
any number of shots if the other two players help.

7.2 Conjectures

Freedom: With two friends, you can drink any
amount. We know that in a three-player game of
BM3L, one of the three players can drink the k of her
choice. This straightforwardly extends to 3 × p-player
BM3L games. The Freedom conjecture is that with
p+ 2 players in BM3L, p of them may have their choice
of k1 . . . kn drinks. If this conjecture fails, it probably
fails for 4 players, which might have a feasible enumer-
ation strategy.

Teetotaller: Someone can drink nothing. When
〈k1, . . . , ki, . . . , kp〉 is achievable in BMsL, so is
〈k1, . . . , 0, . . . , kp〉. This conjecture would be trivial if
not for the rule that requires us to drink the contents of
a full cup if we want to pass it in a different state. This
conjecture is true for all the graphics presented in this
paper;7 we can see that cells in the 0 column are always
filled when some other cell in that row is filled. If this
conjecture fails, it probably fails for BM1L or BM2L
which have the least freedom per player.

In this paper I presented some new results in k/n
Power-Hour theory, as well as correct the historical
record of some inebriated missteps. We saw that
stochastic simulation, abstract interpration, and sam-
pling are powerful tools for solving combinatorial drink-
ing problems. We established some firm results for the
classic game and some bounds for generalizations, as
well as informally looked at some visualizations of its ge-
ometric structure. However, there are still several open
problems in this field that demand further study.

References

[1] Ben Blum, Chris Martens, William Lovas, and Tom
Murphy, VII. Algorithms for k/n Power-Hours.
SIGBOVIK 2012, pages 29–33, April 2012.

[2] P. Cousot and R. Cousot. Abstract interpretation: a
unified lattice model for static analysis of programs

7Actually, it is not established for (only) 11 minutes in Fig-
ure 13, but this is not a proper BMsL game as it takes place over
180 minutes. There should be solutions for 11, like in Figure 10;
this is just a sample.

by construction or approximation of fixpoints. 4th
POPL, pages 238–252.

[3] Tom Murphy, VII. The textformat library for Stan-
dard ML. http://sourceforge.net/p/tom7misc/

svn/HEAD/tree/trunk/sml-lib/textformat/,
2013.


