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1 Introduction

It’s currently the longest 2020 ever on record, seemingly
with a new annoying or demoralizing twist every week. To
me, the most effective distraction is making things, but
what to make? And what if it’s no better than what was
made before? Then perhaps you will experience an annoy-
ing or demoralizing twist. So, here’s an approach that’s
so robust I don’t even mind giving it away: Make some-
thing that nobody would want, or need. The competitive
landscape for needless things is relatively uncrowded, for
obvious reasons. A good way to think of things that we
might not want is to consider common abstractions that
have many instantiations (e.g. chess [17], boolean logic [18],
integer math [11]), and come up with new ones. Moreover,
judge them according to nontraditional criteria. This way,
they will “be better”—in at least some sense—than what
was made before. This is the secret of SIGBOVIK.

This paper investigates several storage devices (“Harder
Drives”) that we didn’t want, or need.1 In doing so, we will
find inspiration from some vexing current events. Even if
only tangentially related, creating structured thoughts on
the periphery may help us digest them. It works for me.
This is the laxative of SIGBOVIK.

Despite setting out to do an “easy, fun project,” of course
I managed to make each one much more difficult than I
initially anticipated. And this, of course, is the curse of
SIGBOVIK. Bon appétit.

1.1 Chainsaws

At first glance, it seems that the maximum number of
chainsaws that a person can wield is two: One per hand.
This is known as dual-wield. It may be possible to achieve
more using “one-man-band” arrangements (shin- and knee-
wielded chainsaws, elbow saws, a mouth-held chainsaw ac-
tivated by blowing into it like a harmonica) but a more
natural way to scale is by juggling the saws into the air.
Now at second blush it seems that an arbitrary number
of saws can be simultaneously equipped, by simply throw-

*Copyright © 2022 the Reagents of the Wikiplia Foundation. Ap-
pears in SIGBOVIK 2022 with the fatal Input/Output error of the As-
sociation for Computational Heresy; IEEEEEE! press, Verlag-Verlag
volume no. 0x40-2A. 6.6e-11 Nm2kg−2

1Source code and accompanying video can be found at http://

tom7.org/harder/.

ing the chainsaws higher into the air. This configuration
is known as ∞-wield. However, throwing chainsaws higher
and higher eventually reaches physical limits. Once the
thrown saws reach the escape velocity of 11.186km/s, they
will not fall back to Earth, and can hardly be considered
brandished by the juggler. Just shy of this, they reach
some maximum height before returning. This loop has two
problems: First, it is not the longest possible airtime. Sec-
ond, it can only be used for one chainsaw at a time, as the
saws will otherwise interfere with one another along the
out-and-back path.

Upon a third look, we need not throw the chainsaws
straight upward; instead we can juggle the saws into or-
bit around Earth. Ignoring air resistance (the chainsaws
cut through air like butter) and assuming double precision
floating point with discrete time steps of 0.1 seconds will
suffice (probably not), my simulation2 finds the longest or-
bit that returns the chainsaw to 1.5m above the surface is
335.36 hours.

There are many such orbits to fill with chainsaws, but the
limiting factor seems to be the density of chainsaws near
the wielder (where the many orbits would interfere). As-
suming each orbit is basically parallel here, and consists of
chainsaws about 0.2 m wide (they can be efficiently packed
in “69 configuration”) moving at the maximum velocity of
11,186m/sec, we see 55,930 per second. We could proba-
bly fit about three deep and three high on each side of the
body, for 18 times that. So we have 1 million chainsaws per
second, for 335.36 hours, which is 1.215 × 1012, a configu-
ration known as tera-wield. This requires expert juggling
skills.

Why am I talking about this? Overall, the important
lesson here is creativity with dimensional analysis: We can
achieve a quantity of chainsaws by multiplying some chain-
saws per second by some seconds.

1.2 Juggling with data

Now imagine that instead of chainsaws, we are juggling
something more dangerous: Data.

One potential setup would be a powerful directional an-
tenna, which broadcasts a stream of data towards the hori-
zon. For radio waves below 40 MHz, significant reflections
off the ionosphere occur, bouncing the waves back to Earth.

2Someone equipped with Johann Sebastian Kepler’s laws could
just solve this exactly.

http://tom7.org/harder/
http://tom7.org/harder/


They may also reflect off the ground, and again off the
ionosphere, and in principle make their way fully around
the planet. The antenna is paired with a receiver in the
same location, which accepts the signal and retransmits it,
“juggling” it back into circulation.

Since a full trip around the Earth is 40,000 km (and
significantly more in this setup due to reflections) and ra-
dio waves take time to propagate, this orbit takes at least
150ms to complete. As a result, we can have 0.15 sec ×
40,000,000 bits/sec = 750 kilobytes of data outstanding in
the steady state. When data we are interested reaches the
receiver we can “read” it, and of course we can choose to
retransmit modified data to perform a “write,” This is simi-
lar to the rotation of a hard drive, with the fixed read/write
head waiting for the “orbiting” platter.

This author does not have sufficient skill to construct
such a system, which would probably not work in practice
anyway. The reflections probably do not make it all the
way around the Earth, and the noise from other radio waves
would offer significant interference.

A superior arrangement would place repeater towers
along the great circle. This would clearly work but would
require an investment in real estate throughout the world.
But the main reason not to do this is that 750kb is a trivial
amount of storage; a similar magnitude is found inciden-
tally in disposable consumer devices (Section 4).

Of course, if we are retransmitting the signal anyway, we
do not need to send it in the same direction. It is much
simpler to send it directly back, like an echo.

1.3 ICMP Echo

Sorry to remind you about the Internet, which seems to be
making the whole world collectively dumber and meaner,
but this section concerns a hard drive made from the trans-
mission delays of the network itself.

Back when the internet was a collaborative and basically
nice place, the Internet Control Message Protocol (ICMP)
was proposed as a way for network nodes to help each other
out. This protocol allows sending messages like “hey this
address is down!” or other tips. Since it is easy to forge
ICMP messages, most off these have potential for abuse
(like telling you the site you’re talking to is down) and are
no longer commonly honored. (As another indicator of the
era, these internet standards are known as “Requests for
Comment”, with ICMP described in RFC 792 [21]. On the
modern internet we still have requests for Comment, but
they are almost universally accompanied by requests for
Like and Subscribe.)

However, many hosts will still respond to an ECHO packet
with ECHO REPLY. This is typically used to “ping” a host:
The source sends ECHO to the destination with some identi-
fying information and an embedded timestamp; the desti-
nation sends ECHO REPLY with that same data back to the
source, and the source can calculate the round-trip time.

Since there are hosts throughout the world that will al-
ready reply to ECHO messages, this could be a perfect setup
for juggling data! The data field of the ECHO can store the

bytes of interest. When we receive an ECHO REPLY we will
“read” or “write” that data if needed, and then immedi-
ately broadcast another ECHO. Since we do not retain the
data otherwise, it will be stored “inside” the internet itself:
Inside the buffers of routers but also as moving photons
inside fiber optics, flowing charge in ethernet cables, and
so on.

In principle we should be able to saturate our internet
connection with outgoing ECHO and incoming ECHO REPLY;
even on a consumer plan (these days on the order of 1
gigabit/sec) we may be able to store significant amounts
of data. If we ping a host on the Earth’s antipode, the
round trip time will be at least 150ms (speed of light and
circumference are limits here as well). 1Gb/sec × 0.15sec
= 833 Megabytes.

In practice this proves to be much more difficult. Alas,
even the apparently harmless ECHO has been regularly
abused for denial-of-service attacks, such as the “Ping of
Death” [27] and “Smurf attack” [28]. Thus, hosts almost
always have hard limits that we have to work within. We
will face the following difficulties that cause us to fall far
short of the ideal above:

1. Hosts limit the size of an ECHO packet they will respond
to. 512 bytes of payload is a typical limit for a fairly
permissive host,3 but many will reject payloads more
than a few dozen bytes. The IP header (20 bytes)
and ICMP header (8 bytes) thus contribute significant
overhead.

2. Hosts have global limits on the rate of incoming and
outgoing ICMP messages.

3. Consumer internet connections have built-in throttling
of ICMP messages, perhaps to limit the impact of
Denial-of-Service attacks originating from their net-
works.

4. Pings are “best effort” and readily dropped by con-
gested routers without retries (this can even be a de-
sirable property for measuring network congestion).

1.4 Pinging the internet

While developing code that can process many thousands
of pings per second and investigating these limitations, I
figured I might as well ping the entire internet.

Here by internet I mean “IPv4 address space.” I don’t
care about IPv6 which has way too many addresses (plus
like, call me when you are at least version 7, right?). There
are only 232 IPv4 addresses, which is no longer that big
of a number. I wrote a fairly simple program pingy.exe

which pings all of the hosts of the form *.*.c.* for some
c ∈ {0, . . . , 255} in a random order. For each one it saves

3Allegedly, “all hosts are required to be able to reassemble data-
grams of size up to 576 bytes,”[22] but I guess most do not care about
this or consider it better than dropping all pings. There are not many
legitimate uses for a payload of this size, anyway.



the number of milliseconds of round-trip time (or records
special sentinel values for “timeout” or “wrong data re-
turned”) in a single byte. This results in 256 files, which
assembled are 4.2 Gigabytes.

This turned out to be much more logistically challenging
than I expected. Näıvely I should be able to send millions of
pings per second, but the packets are dropped somewhere
if I exceed about 1000 pings/sec. Even at 1000 pings/sec (a
trivial amount of bandwidth) this behavior seems to wreak
havoc on my home network; other devices sharing the con-
nection get extremely bad performance, a no-no for the
Work-from-Home video call lifestyle of the pandemic. This
could be because my internet provider throttles ICMP; it
could also be that some hardware or software in the path
is not able to handle thousands of different IP addresses
each second (e.g. there may be fixed-size NAT tables). I
tried using a VPN, but this had a much lower success rate;
the VPN egress point probably throttles ICMP to prevent
DDoS attacks, and it’s possible that many internet gate-
ways also simply block ICMP from known VPN endpoints
since they are obvious choices for people up to no good.
Anyway, what I thought might take a few hours or a week-
end ended up taking months. Eventually I rented time on
several machines in different data centers to parallelize the
process; this also produced a higher ping response rate than
my home network, so I redid all of the already-completed
sections for uniformity. The results make a nice poster,
though, and are in Figure 1.

9.18% of addresses responded successfully within 4 sec-
onds. Only 4,529 hosts (0.000105%) replied with the wrong
data.

2 Harder Drive: Pingu

At last, I yearn to build a virtual hard drive using the ideas
above. It will be called pingu.4 To do that, I first had to
figure out how to make a hard drive. This is no big deal.

2.0.1 nbdkit

In UNIX, storage systems are abstracted as “block de-
vices.” Like all things in UNIX, it is conceptually “just
a file,” but then gets complicated with all sorts of conces-
sions for efficiency. Fortunately, efficiency is a non-goal for
this project. We could implement these drives as kernel
modules that implement the basic operations of a block
device. This would be a bad choice because of the num-
ber of userspace facilities we want to use, and also because
I would have to do a lot of rebooting as my myriad bugs
panicked the kernel.
nbdkit (for “no big deal” kit) is a library for creating and

mounting Network Block Devices in userspace. Network
Block Device (for “NBD”) is a protocol for communicating
with a quote-unquote block device (for example, a physical

4Named for the classic stop-motion penguin of the same name.
Also as in “i ping u 2 store data thx 4 ur help”

hard drive, or a virtual drive like a file containing a DVD-
ROM image, or a block of memory, or the variety of weird
drives considered in this paper) over a network. It’s also
straightforward to use with a local quote-unquote network
(i.e. UNIX domain socket).

In order to create a device, you implement functions
like pread (read some bytes from a region in the de-
vice and copy them into the caller’s buffer) and pwrite

(same in reverse). There are also many optional opera-
tions (e.g. “fast zero” a region) for efficiency, plus hints for
nbdkit or the kernel to know how to optimize data lay-
out on the drive. For example I was charmed to see a flag
is_rotational that describes whether the drive is based
on spinning platters, which presumably is used as a hint
that sequential reads/writes are more efficient. The block
device is compiled as a shared object that can be loaded
into nbdkit’s server, then attached (as root) as a block
device like /dev/nbd0. At this point, the device can be
formatted with some filesystem.

2.0.2 Implementation

The smallest drive that can be formatted and mounted on
a normal Linux machine is 51,200 bytes, using the FAT12
filesystem common on DOS floppy disks in the 1980s [26].5

So the device consists of one hundred 512-byte blocks. Each
block will be stored inside multiple outstanding pings (for
redundancy) with a 512-byte payload.

Despite pinging the whole internet in Section 1.4, we use
a fixed set of IP addresses here. The reason for this is
that we want a set of IP addresses that are stable, reliable,
and have high latency. They must respond to pings with a
512-byte payload. We would also prefer these to have un-
correlated failures, because if all of the outstanding pings
fail for a block, then the data is permanently lost. So we
want them to be geographically diverse, for example. I also
prefer to use major commercial sites that can clearly bear
the load, as opposed to e.g. someone’s cell phone (who may
even have metered bandwidth). These are actually hard
to identify from the full data set, particularly the last cri-
terion, but it is not hard to find candidates by hand. I
produced the list of ∼75 hosts by searching for “most pop-
ular websites in Madagascar” (etc.) and manually pinging
them to make sure the criteria are met, particularly the
latency. Many sites worldwide use content networks (or
are simply hosted in the United States) and so they are
much faster than the speed of light would suggest. I found
that database-backed sites (like e-commerce pages) were
less likely to be on content networks than e.g. news sites,
which makes sense.

Implementing this block device is tricky: We can only
process a read or write at the moment a ping returns from
the network.

Blocks. Each block contains a sequence and version
counter, as well as the set of outstanding pings (send time

5Try: mkfs.vfat -F 12 -v -a -n "PINGU"



Figure 1: The results of pinging all 232 IPv4 addresses in early 2022. The IP addresses are plotted along a 16-level
Hilbert curve [9]. The full image is 65536 × 65536 pixels (and 4.2 Gigabits), which alas cannot be fit within the
preposterously limited SIGBOVIK page and PDF size guidelines. This image is 2048 × 2048, so each pixel represents
32× 32 hosts, with the level of grey giving the response rate (white = no response). There are several obvious patterns,
which can be cross-referenced with Figure 2 to see the first octet of the IP address. Some interesting regions: There are
almost no responses in the top-right region, which is 224.* to 255.*; these are the former “Class D” and “Class E”
segments which are multicast and reserved respectively. There is a dark block at the center that almost always receives
responses, which is from the 127.* “loopback” addresses. This all makes sense. It is interesting to see how active regions
allocate their space; some have a variety of distinctive patterns and others seem uniformly random (Figure 2). This way
of plotting the address space is basically canonical, so it is a bit disappointing not to find any graphical messages. Like,
how cool would it be to embed a micro QR code in some 16x16 subnet that says IPv6sux? It would be a little bit cool,
is how cool.



0 1

23

4

5 6

7 8

9 10

11

1213

14 15 16

17 18

19 20 21

2223

24 25

262728

2930

31

32

33 34

35 36 37

3839

40 41

424344

4546

474849

50 51

52

5354

5556

5758

59

60 61

6263

64

65 66

67 68 69

7071

72 73

747576

7778

79

80 81

8283

84

85 86

87 88

89 90

91

9293

94 95 96 97

9899

100

101 102

103 104

105 106

107

108109

110 111

112

113114

115116117

118 119

120121

122 123 124

125 126

127 128

129 130

131 132 133

134135

136 137

138139140

141142

143

144 145

146147

148

149 150

151 152

153 154

155

156157

158 159 160 161

162163

164

165 166

167 168

169 170

171

172173

174 175

176

177178

179180181

182 183

184185

186 187 188

189 190

191

192193

194 195

196

197198

199200

201202

203

204 205

206207208

209210

211212213

214 215

216217

218 219 220

221 222

223

224

225226

227228229

230 231

232233

234 235 236

237 238

239 240 241

242243

244

245 246

247 248

249 250

251

252253

254 255

(a) (b) (c) (d)

Figure 2: (a) An internet legend: The location of top-level octets in the Hilbert curve used to create Figure 1. Then,
several 1 :1 zoomed regions, showing how much the textures vary: (b) The subnet 213.6.*.* (Palestine Telecommunica-
tions Company) shows some curious patterns of clumps or lines surrounded by whitespace, almost like a map of ancient
city ruins. (c) The subnet 5.138.*.* (Rostelecom Macroregional Branch South) is almost uniformly random, although
it does look like it might be hiding a faint spooky skull at the top. (d) The subnet 45.195.*.* (CloudInnovation)
clearly has distinct subregions, which makes sense as it is an IP address management company. In that sense it Fractally
resembles larger portions of the Internet. We also see some missing regions in the shape of Tetris pieces (Section 3).

and host IP, so that we can detect timeouts and update
host stats). There is also a queue of pending reads and
writes. The contents of the block is not stored.

Reading. A call to read a block inserts itself in a queue
and then waits on a condition variable; it will not return
until we receive a ping that belongs to that block.

Writing. A call to write is accompanied by some data
(the caller has allocated it). These are also enqueued and
wait synchronously until we receive a ping from the host
and can process it. In the general case we cannot process
a write without receiving the ping, because the write may
only be to a portion of the block (and so we need to know
the data outside that region). When we process the write
we update the version counter so that we don’t later use
the data from any other outstanding redundant pings.

Hosts. With each host (IP address) we also keep track
of its recent latency and reliability (exponentially-weighted
moving averages) as well as a token bucket to prevent ex-
ceeding a prescribed number of pings per second to that
host.

Processing. A single thread calls select to see if the
socket is ready. For juggling we need to simultaneously
be ready for both reading and writing. We then read a
ping, and use its sequence number to route it to the cor-
rect block. The block validates the ping (if it has the wrong
version it’s just discarded, for example) and uses it to ful-
fill any outstanding reads (copying into their buffers and
notifying the condition variable so those calls can return).
We then process any writes to compute the updated data,
and juggle the data back onto the network by sending pings
until we are at the target redundancy (there will be at least
one, since we just received one of the outstanding pings).
For each outgoing ping we prefer a host with high latency,
high reliability, and which has not recently been used. We
also avoid using the same host more than once for a block,
because if we lose all the outstanding pings, the data are

Figure 3: Visualization of the pingu drive (truncated). The
squares at the top are the data blocks; where white indi-
cates a healthy block with a full complement of outstand-
ing pings, and darker colors less so. The crossed-out blocks
have not yet been written (and so store no data). The red
dot indicates a block with an outstanding write, and the
green bar the current block for the round-robin initializa-
tion. At the bottom, some of the hosts and their recent
statistics.

forever lost.

Initialization. The loop just described is driven by the
receipt of pings, so we also need to kick off the process by
sending initial pings for each block. After each call to select
we initialize a single block if it has not yet been, and has
at least one outstanding write.

Visualization. The block device runs in userspace, but
not in a way that supports a UI. To view the device while
it’s being used, I send text status updates to nbdkit’s de-
bugging interface, and then pipe these to an SDL-based
visualization (Figure 3). It shows the status of each block
and statistics on each host, as well as read/write activity.
It is fun to watch the process of formatting it for FAT12
and reading/writing files.



2.0.3 Results

Next we want to evaluate this Harder Drive according to
various criteria. Our goal is not to create a drive that is
“good” according to normal criteria like speed, but it is
still interesting to benchmark it.

For each benchmark in this paper we will store a single
file on the drive. The choice of file typically doesn’t matter
for the benchmark (which will compute “bytes per second”
etc.) but it very much matters for the aesthetics of the
project. In each case we’ll choose a file that establishes a
kind of “improper hierarchy” [16]. For pingu, we’ll store
RFC 792 [21], a 29,186-byte text file that describes ICMP,
including the ECHO and ECHO REPLY messages with which
we’ve constructed the drive.

Before benchmarking, we format the drive with a FAT12
filesystem and mount it (-noatime, etc.). We then sync

and flush the kernel cache.6 Flushing cache is very impor-
tant, as these tiny drives easily fit entirely within the cache
and appear to be very fast if you don’t do this. Then, the
benchmark writes the entire file to the test drive, syncs and
clears cache again, and reads it back, comparing to make
sure the correct bytes were written. We repeat this process
over and over, for at least one minute (though some drives
will only complete a single pass, taking much longer than a
minute). The sync/flush between writing and reading is at-
tributed to the write time, because this is when the writes
are actually taking place.

Qualitative. This is a good Harder Drive. It solves a
problem we don’t have, which is to unreliably store a small
amount of data in an even smaller amount of memory.7 It
treats latency as a desirable quantity, contrary to the usual
preference. Implementing the drive was much more difficult
than expected from back-of-the-envelope calculations.

Cost. The cost consists of an up-front cost (a computer
and network interface; even a $35 Raspberry Pi should work
fine) and an incremental cost per byte stored. This drive is
unusual in that storage is derived from network bandwidth,

6echo 3 > /proc/sys/vm/drop_caches

7I considered whether it would be possible to create a drive that
used no memory for each additional block, and how I might even
define/measure that. This lead me to a brief experiment with compu,
which never graduated to a proper Harder Drive. This drive compiles
the drive’s contents as code, namely a large switch statement that is
of the form case ADDRESS: return DATA; for each address in storage.
The joke is of course that if you don’t count the “code” towards
memory, you can sneak memory into the code. Of course, to write to
the drive, we need to rewrite the code and recompile it (this is done
dynamically by forking g++ and then loading the recompiled symbol
with dlopen (which obviously uses memory)). I was hoping that the
compiler would be able to do some clever optimizations on the switch
statement, which might have led to some interesting developments.
But the only ones I observed were the cases where the entire contents
are the same byte, or where each address contains the low byte of
the address as data. Otherwise it always just compiled as a table
lookup, which is pretty uninspiring. For completeness, this drive was
annoyingly fast in benchmarks (of course using its own source code as
the benchmark test file): 6,119 bytes/sec writing; 10 Megabytes/sec
reading.

which is measured in bytes per second. My home network
is “1 Gigabit/sec” and $80/month ($3.04×10−5 / second).
Storing 51,200 bytes renders the connection otherwise un-
usable, so we assume this is close to the maximum storage.
This is a cost of 0.156 cents per byte per month, which is
5.94×10−8 cents, or 59.4 nanodollars, per byte per second.

Longevity. Longevity is poor. The one-minute bench-
mark succeeds with 100% accuracy, but data will readily
be lost if the drive is left running for several minutes. We
can increase longevity by using hosts with higher latency,
although this reduces speed.8 Since the data are stored ex-
ternally using untrusted hosts around the world, it is easy
for adversaries to tamper with it by sending us back the
wrong data. This could be mitigated with checksums or
error correcting codes [23], although we want to avoid any-
thing that might resemble “storing” the data locally (this
is cheating). On the other hand, since we do not store data
locally, this drive could be considered “non-volatile” in the
sense that if we completely lose power and reboot, we can
still recover the data as the pings are received from the
network. Such a reboot would need to happen in less than
about 100 milliseconds, though.

Speed. The drive is slow but tolerable. In the bench-
mark wrote and read the test file 15 times in one minute,
and achieved 15,286 bytes/sec writing and 13,239 bytes/sec
reading. Reads and writes are basically the same operation
so this gives a small indication of the variance (high) as
well. We can get better I/O performance by using hosts
with lower latency, but this increases the (local) cost and
decreases longevity.

Power. Power consumption is low. The up-front power
cost for a computer and network connection is small (Rasp-
berry Pi 3 is about 3 Watts). The data are actually stored
externally, and if we were the only use of the Internet,
a very significant amount of power would be consumed
in transmission lines. In the benchmarked configuration,
each 512-byte block has 4 outstanding pings, for which we
assume a mean cable length of 1/4 Earth circumference
(10 Mm). A copper connector like Cat6 UTP has nominal
DC resistance of 84 Ω/km, so the loop resistance would be
840 MΩ, which is actually rather high. The math to fig-
ure out the power per byte eludes me (not to mention that
undersea cables are usually fiber optics), but it is not triv-
ial. A typical undersea data cable’s excitation power is on
the order of tens of kilowatts, with repeaters every 100 km
or so. Fortunately, the total bandwidth of such cables is
extremely high, with these 512-byte packets representing a
minuscule fraction. Rather than try to multiply a big esti-
mate by a small estimate, it is better to work from a known
quantity: Assuming that the cost of the consumer internet
connection also covers the marginal cost of the power in

8One easy approach is to deliberately incur additional overhead.
For example by connecting to a VPN in Nigeria, I ensure a round-trip
to Africa before the pings even make their way to the open Inter-
net, which increases latency significantly. This reduces throughput to
2,948 bytes/sec., however.



these backbones, at 0.15c/kwH, this seems to be at most
5.8 µWatts per byte-second.

Is rotational? One of our criteria will be whether the
drive should set the is_rotational flag for nbdkit (Sec-
tion 2.0.1). The inspiration for this drive (orbital chain-
saws or radio towers around the world) would be rotational,
but this drive is not. Although the initialization happens
round-robin, due to the stochastic timing of the outstand-
ing pings, the drive soon thereafter processes the blocks in
a random order.

Harm to society. The drive is definitely harmful to my
home network; whether that can be considered a positive
or negative to society is left as an exercise for the reader.
At the benchmark scale of 51,200 bytes, the effect on the
broader internet is trivial, and I took care to not overwhelm
any particular host. However, at scale this drive would be
harmful to the shared infrastructure, and carries the moral
hazard of “freeloading” off the willingness of hosts to reply
to ECHO messages.

3 Tetris, the Soviet Mind Game

Sorry to remind you about Vladimir Putin’s illegal inva-
sion of Ukraine, but this section concerns a hard drive
made from the best Russian (actually, Soviet) video game,
Tetris [20].

Tetris is an inventory-management survival-horror game
with 19 principal characters, each with its own story arc;
they are:

Like all living things, these characters are made up of four
individual pixels, or “blocks.” By being confused about the
fact that words can have multiple meanings, we can have
an idea: Make a block device from these blocks, using their
presence or absence in the playfield to store data. A Tetris
board is 10 columns wide and 20 rows high. Even if we
could use every one to store a bit, 200 bits is far too few to
create a filesystem. Therefore we’ll use an array (or if you
will, a Beowulf cluster) of Tetris games to create the block
device.

We will store a bit pattern in a Tetris game by playing a
series of moves to create a specific pattern in the playfield.
We can then read the data directly from that pattern. If we
need to write a new pattern, we reset the game and begin
again.

Each “line” of the playfield has 10 positions, each of
which could have a block in it or not, so we could con-
sider storing 10 bits. However, due to the rules of Tetris,
if all of the cells are filled, then the line is cleared. This
would make it impossible to store the pattern 1111111111.
It will also be impossible to store the pattern 0000000000,
because an empty line cannot support any pieces above it,
so empty lines can only appear in some completely-empty
prefix of the playfield. Additionally, observe that a Tetris
board always has an even number of cells filled. We can
only add 4 blocks by dropping a piece, or remove 10 blocks
by clearing a line, which can only yield even numbers. So it
will also benefit us to have one free cell per line for parity.

uint16_t NextRNG(uint16_t state) {

uint16_t carry = ((state >> 9) ^ (state >> 1)) & 1;

return (state >> 1) | (carry << 15);

}

Figure 4: The simplified code for NES Tetris’s pseudoran-
dom number generator, which resides at address 0xAB47 in
the Tetris code. This is a 16-bit two-tap LFSR: The carry

is the exclusive-or of the second and tenth least significant
bits. We right-shift off the least significant bit and use the
carry as the new most-significant bit.

A good choice is to use 8 cells per line for data, encoding
a single byte, which is a nice round number.

We can’t use the full height of the playfield, since we need
some room in which to maneuver pieces. 8 is a convenient
choice here as well (although more is possible). Each Tetris
game will thus store 64 bits: Eight lines, each with eight
bits. We’ll use the venerable NES Tetris (Nintendo, 1989),
which is also 8 bits.

3.1 Playing Tetris

Now the problem is: Given a blank board, what sequence of
moves do we make in order to produce the target pattern?

This is not easy. To begin with, Tetris normally gives
the player pieces at random. As anyone who plays Tetris
knows, it can be very disruptive to your strategy when you
don’t get the piece you need for some time. The first step
will be to reverse engineer the pseudorandom piece drop
logic so that we can influence the sequence of pieces that
are dropped.

3.1.1 Random pieces

The core of the piece drop logic is a 16-bit linear feedback
shift register [8].9 Equivalent C code is given in Figure 4.
This 16-bit state is updated on every frame (and sometimes
more; see below), and has period 32767.10

The pseudorandom state is extended with two addi-
tional bytes: One giving the last dropped piece (a piece
is “dropped” into a queue so this is actually the “next
piece” to the player) and the count of pieces dropped (mod
256). When the player places a piece, the routine at ad-
dress 0x9907 uses the LFSR state and these two bytes to
drop a new piece (and update the state):

RNGState NextPiece(RNGState s) {

constexpr std::array <uint8_t , 8> PIECES = {

0x02 , 0x07 , 0x08 , 0x0A , 0x0B , 0x0E , 0x12 ,

/* not used */ 0x02 ,

9Fittingly, Golomb was a pioneer in both shift registers and poly-
ominoes, the latter which influenced Tetris itself!

10It is possible to create a 16-bit LFSR with a period of 65535, but
this one is simply deficient. This is one of several small problems with
the code. I hope to one day release a “hot fix” ROM that fixes this
and other bugs and inefficiencies.



};

s.drop_count ++;

uint8_t a = (s.lfsr_hi + s.drop_count) & 7;

if (a == 7 || PIECES[a] == s.last_drop) {

// re -roll if out of bounds , or repeat

s = NextRNG(s);

// mod 7 forces in -bounds , but allows repeats

a = ((s.lfsr_hi & 7) + s.last_drop) % 7;

}

s.last_drop = PIECES[a];

return s;

}

It uses three bits of the RNG state to pick a random
piece (there are 7 different shapes, and the game always
drops a shape in the same orientation). If it rolls an 8,
or if the selected piece is the same as the last one, then it
re-rolls: Another update of the LFSR, and then a different
weird procedure to pick the piece index. Here the result
is mod 7, so it is always in bounds. The code only re-rolls
once, so it is possible to drop the same piece twice in a row,
just less unlikely.

Ideally we would be able to select a sequence of pieces
that we want, and then force Tetris to give us those pieces.
Since the LFSR update runs every frame, we can use a
different number of frames while placing a piece, and get
a different LFSR state at the point NextPiece is called.
The LFSR is “pretty good,” so we can easily cause the first
roll to be whatever value we want by just waiting. In the
worst possible case we need to pause 98 additional frames
before seeing all 8 rolls (Figure 5), which is 1.6 seconds at
the NES frame rate.

However, this does not work for re-rolls, which is the only
way to get the same piece twice in a row. Even though we
use the same “pretty good” LFSR to get the second pseu-
dorandom number, two successive calls are highly corre-
lated. There are only two possible new values for the high
byte of the LFSR (s.lfsr_hi): (s.lfsr_hi >> 1) and
128 + (s.lfsr_hi >> 1). Worse, since these are congru-
ent modulo 8, we really just have (s.lfsr_hi >> 1).

As a result, even if you have complete control over the
LFSR state (but not the previous piece nor drop count),
there are a limited number of outcomes possible from the
reroll. We can just inspect all the possible combinations
of previous piece and drop count to see that with some
there are at most 4 possible rerolls, and as few as 2. For
example, if the previous piece is and 253 pieces have
been dropped so far, then only , , and can result.
So here it is possible to get two pieces in a row. But if
the last piece was , and 3 pieces have been dropped so
far, then only and are possible from a re-roll. Since

cannot result from the first roll and is not possible for
the re-roll in this state, it is impossible to get two pieces
in a row on the 3rd and 4th drop. All pieces other than
periodically have this problem.11 Even when it is possible,

11This is another example of a deficiency in the code that could eas-

it may require a long drought to get the LFSR in a rare
working state.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Figure 5: The maximum possible “drought” for the NES
Tetris LFSR. This is the number of iterations before we see
all possible rolls (all eight possible values for the low three
bits), histogrammed over all meaningful start states (LFSR
state and drop count). The minimal value is 8 (obviously,
by pigeonhole) and rarely it can be as high as 99, but most
of the time we have seen all rolls by a few dozen iterations.

By manipulating the RNG we will be able to achieve any
sequence of pieces, except if that sequence contains repeats.
There is a similar consideration for the first two pieces of
the game, which are generated on the same frame (cur-
rent and next piece) and so only certain combinations are
possible. To simplify this issue away, we begin by always
playing the same starting sequence: 0 3 6 2 7.
This means to drop a in column 0 (the leftmost column),

in column 3 (the left edge of the piece goes in column
3), etc. This sequence clears two lines, leaving the board
empty, with the only constraint now being that we cannot
start with a piece. In fact we will always start with a
piece in the leftmost column to make use of the modular
plans described in the next section.

3.1.2 Planning

With a smart algorithm, it would be possible to plan moves
within these constraints to generate moves for any byte
pattern that we want to create. However, this is not an
easy feat. Creating very sparse patterns (few 1 bits) is
pretty challenging because pieces can only be placed on
top of existing blocks (Figure 6).

Instead, the approach I took was to build a modular solu-
tion for each byte. We always place the board in a standard
configuration (Figure 7) where a piece is in column 0. A
portion of the board below it contains the encoded bytes
(one per row) and parity (first two columns). We do not
depend on the contents of this portion at all, so the first
moves must hang off of the piece. For each byte, we need
to come up with a series of moves that takes a starting con-
figuration like this, encodes the byte (and its parity) in the
bottom row, and then recreates the starting configuration
with the piece moved up one line. These plans are also

ily be fixed. If we simply remove the instruction at 0x9925, AND #$07

(so that the re-roll just uses (s.lfsr_hi + s.last_drop) % 7) then
all configurations can now produce all pieces upon re-roll. The mod-
ulus is computed with a loop, so this is not a strict efficiency im-
provement, but efficient alternatives with this property exist, like
((s.rng2 & 15) ^ s.last_drop) % 7.



Figure 6: A screenshot of NES Tetris after playing for 2
minutes and 46 seconds, encoding the sequence 0, 0, 0,

0, 64, 0, 0, 0. Floating blocks like this are very difficult
to make. Try creating a position like this, even by selecting
your favorite piece at each step!

nontrivial to construct, but we can take our time to solve
each byte offline. Then, because they are compositional,
we can assemble them to create any sequence of bytes at
runtime.12

An example sequence is illustrated in Figure 8. They are
not easy to construct by hand, but it is not too hard to find
them with computer search. I have a two-phase heuristic
search: First, a heuristic that measures how close we are
to placing the correct bit pattern in the bottom row (with
penalties for covering bits that we still need to set, or for
growing the pile too high). Second, measuring how close
we are to reaching the standard start position (by clearing
any leftover stuff).13 This finds solutions for all bytes eas-
ily; to find really good short sequences we just run it for
hundreds of hours. This search uses my own implementa-
tion of Tetris, which can be simplified because e.g. we only
drop pieces straight down. It is orders of magnitude faster
than emulating the NES Tetris ROM.

With this setup, the best solutions I know of for each
byte (as of publication) are as follows:

� 00: 1 0 3 5 3 8 5 5 8 0 5 2 0
� 01: 1 3 5 2 7 0 3 7 4 0 6 8 0
� 02: 1 0 3 2 0 5 7 6 8 4 5 7 0
� 03: 1 0 3 3 5 7 5 7 1 7 8 0 2 0 4 6

12As one final complication, when we concatenate two of these se-
quences we still need to avoid repeat pieces. We do this by only
allowing a sequence to end with the or pieces, and not allowing
either of those to start sequences.

13Details here are in encode.cc. My first attempt worked pretty
well, so I didn’t fiddle with it much; no doubt it can be improved!

Figure 7: The start state as we encode each byte. The
piece in the left column is known to be present, but we

do not know the state of any blocks below it. We will only
build off of this block so that the solution works regardless
of what is below, and at any height (as long as there is
enough headroom in the playfield). The parity columns
will be 0b01 or 0b11 as appropriate, except in the case of
the byte 0xFF we use 0b00 so that we don’t create and clear
a line. A specific example solution is given in Figure 8.

(a) (b)

Figure 8: Encoding 0x26, which is 0b00100110. This is
one of the easiest bytes. In (a), drops 1–6 build off of the
starting , conveniently dropping a 1 bit in column 4 along
the way. These moves clear the two top lines, leaving some
partial blocks. Note that we use and multiple times,
but never consecutively. In (b) we use some of the floating
pieces to fill the remaining 1 bits, clean up by making two
more lines, and then drop a onto known support in order
to put ourselves back in standard position, one line higher.
Many sequences create the “ ” shape through means other
than placing it literally.



Figure 9: The number of Tetris pieces placed to create
each byte, with light being the fewest (11) and dark being
the most (22). The first row is (0x00, 0x01, . . . ). We tend
to need fewer moves to create bytes with fewer 1 bits, and
there are some symmetries and patterns visible. On the
other hand, I was somewhat disappointed not to see the fa-
miliar Triforce pattern appear here, as it has so many times
before [13; 14; 15]. It may be that these solutions are not
yet optimal (but they are probably close). Alternatively, it
could be that this is the exception that proves the Hyrule.

� 04: 1 3 5 7 2 8 0 4 6 3 0 7 0
� 05: 1 0 3 5 8 5 3 6 2 8 0 8 0 6 3 0
� 06: 1 3 5 2 7 8 0 4 6 2 8 0 5 1 0 6
� 07: 1 0 3 3 5 7 5 8 7 4 6 0 8 3 0 0
� 08: 1 0 3 2 5 4 6 0 4 8 7 7 0
� 09: 1 0 3 5 6 8 3 4 2 6 8 0 8 0 0 4
� 0a: 1 0 3 5 6 4 8 3 8 0 6 0 2 5 8 0
� 0b: 1 0 3 3 5 6 5 1 8 8 6 8 0 5 2 0
� 0c: 1 0 3 5 6 8 3 8 6 0 4 2 0 7 5 0
� 0d: 1 0 3 5 6 8 2 4 8 6 0 8 1 0 5 3
� 0e: 1 0 3 5 6 8 3 8 6 2 0 4 8 0 5 0
� 0f: 1 0 3 3 5 7 5 8 6 0 8 1 5 0
� 10: 1 0 3 3 5 7 8 6 5 6 0 2 0
� 11: 1 0 3 3 5 7 8 1 6 5 8 0 0 3 6 2
� 12: 1 0 3 3 5 7 5 7 7 2 0 4 6 0 7 0
� 13: 1 0 3 3 5 7 7 5 8 0 4 6 3 7 0 0
� 14: 1 0 3 5 2 8 5 8 6 3 0 5 7 3 0 0
� 15: 1 0 3 5 8 5 1 3 8 6 5 8 0 1 5 0
� 16: 1 0 3 3 5 7 5 8 7 5 1 8 5 3 0 0
� 17: 1 0 3 3 5 7 7 5 8 0 2 5 7 0
� 18: 1 0 3 5 6 3 2 8 6 0 7 4 7 3 0 0
� 19: 1 0 3 5 6 8 3 1 8 2 0 6 5 8 4 0
� 1a: 1 0 3 5 6 8 3 6 8 4 3 7 0 5 0 0
� 1b: 1 0 3 5 7 5 3 6 8 0 1 5 7 0
� 1c: 1 0 3 5 6 8 3 6 8 4 5 0 7 0 3 0
� 1d: 1 0 3 5 7 3 5 6 8 5 0 7 1 0
� 1e: 1 0 3 5 6 8 3 6 8 0 4 6 1 0
� 1f: 1 0 3 5 6 8 4 2 6 8 0 4 7 0
� 20: 1 3 4 0 6 8 3 5 7 2 0 7 0
� 21: 1 3 4 0 6 8 4 8 0 6 0 3 8 0 0 4
� 22: 1 3 4 0 6 8 8 4 7 0 1 7 5 3 0 0
� 23: 1 3 4 1 6 8 0 8 4 6 2 8 4 5 0 0
� 24: 1 3 0 4 0 6 8 4 8 6 0 4 1 3 7 0
� 25: 1 3 4 1 6 8 0 4 6 8 2 8 3 6 0 0
� 26: 1 3 4 0 6 8 8 4 6 0 0
� 27: 1 3 0 4 0 6 8 8 4 6 7 0 3 0
� 28: 1 3 4 0 6 8 3 7 6 0 0
� 29: 1 0 3 5 6 8 3 0 5 8 3 3 8 0 6 0
� 2a: 1 3 4 0 6 8 2 7 6 0 4 6 1 7 3 0
� 2b: 1 0 3 5 6 8 3 8 1 5 4 7 0 0
� 2c: 1 3 4 0 6 8 7 4 7 5 1 2 7 4 0 0
� 2d: 1 0 3 5 6 8 3 7 5 0 1 4 7 0
� 2e: 1 3 4 1 6 8 0 4 6 8 2 5 2 7 0 1 5 7 0
� 2f: 1 0 3 5 6 4 1 8 8 6 7 4 0 0
� 30: 1 3 0 4 0 6 8 8 4 7 5 0 6 1 3 0
� 31: 1 3 4 0 6 8 1 4 7 5 7 8 0 4 0 0
� 32: 1 3 4 0 6 8 8 4 2 7 5 0 7 3 0 0
� 33: 1 3 4 0 6 8 0 8 4 6 7 0 3 0
� 34: 1 3 4 1 6 8 0 4 6 1 8 4 5 7 0 0
� 35: 1 3 4 0 6 8 2 4 6 8 0 4 2 7 8 5 3 0 0
� 36: 1 3 4 0 6 8 4 6 8 0 1 3 6 0
� 37: 1 3 4 1 6 0 8 8 4 2 6 4 7 0
� 38: 1 0 3 4 1 6 8 7 6 4 0
� 39: 1 0 3 5 8 3 5 5 7 0 8 4 1 0
� 3a: 1 0 3 3 5 7 5 8 0 6 7 4 1 0
� 3b: 1 0 3 3 5 7 7 6 8 3 0 6 1 5 3 8 0 5 0
� 3c: 1 3 4 1 6 8 0 7 6 4 1 5 3 7 0 7 5 1 0
� 3d: 1 3 4 0 6 8 7 1 5 0 4 5 7 0
� 3e: 1 3 4 0 6 8 8 4 0 6 4 0 0 6
� 3f: 1 0 3 3 5 7 5 8 0 7 6 4 2 4 0 8 0
� 40: 1 0 3 5 8 5 6 3 8 2 5 0 0
� 41: 1 0 3 5 8 5 3 6 1 7 8 0 1 5 0 2
� 42: 1 0 3 5 7 4 8 3 0 6 8 2 0 0 4 6
� 43: 1 3 5 1 7 0 8 3 5 4 0 8 4 7 1 0
� 44: 1 0 3 5 8 5 3 6 4 8 0 1 5 0 7 0
� 45: 1 0 3 5 8 3 5 0 7 4 7 8 3 5 0 0
� 46: 1 0 3 3 5 7 5 8 7 1 0 4 3 6 0 6
� 47: 1 0 3 3 5 7 5 8 6 8 0 1 0 4
� 48: 1 0 3 5 3 6 8 7 8 0 2 5 0 3 6 0
� 49: 1 0 3 5 7 5 3 6 8 1 0

� 4a: 1 0 3 5 6 8 3 8 6 2 8 4 0 0 0 4
� 4b: 1 0 3 5 7 5 3 6 8 1 0 7 0 3
� 4c: 1 0 3 5 6 3 3 8 0 6 8 6 3 5 0 0
� 4d: 1 3 5 7 0 8 3 2 5 4 8 6 0 1 6 8 3 0 0
� 4e: 1 0 3 5 6 3 8 8 4 6 0 1 0 6
� 4f: 1 0 3 5 7 5 3 6 8 1 7 0 0 4
� 50: 1 0 3 5 8 5 6 3 8 1 0 3 7 0 4 0
� 51: 1 3 5 1 0 6 8 3 6 8 4 0 8 1 0 4
� 52: 1 0 3 3 5 7 0 7 5 8 4 3 0 7 5 0
� 53: 1 0 3 3 5 7 7 5 8 0 4 1 6 0
� 54: 1 0 3 5 8 5 3 6 8 1 5 1 0 0 7 3
� 55: 1 0 3 5 8 5 3 6 8 4 0 8 1 6 1 7 3 0 0
� 56: 1 0 3 3 5 6 8 8 6 0 4 1 0 6
� 57: 1 0 3 3 5 7 5 8 4 8 7 0 1 6 3 6 0 2 0
� 58: 1 0 3 5 6 8 3 6 2 0 4 7 8 4 0 0
� 59: 1 0 3 5 3 7 5 6 8 0 4 1 6 0
� 5a: 1 0 3 3 5 7 5 8 0 6 8 4 1 0
� 5b: 1 0 3 5 6 8 3 8 6 1 4 7 0 0
� 5c: 1 0 3 5 8 5 3 5 8 0 7 4 1 0
� 5d: 1 0 3 5 7 5 3 6 8 1 0 5 7 0
� 5e: 1 0 3 5 6 8 3 8 6 1 4 0 0 6
� 5f: 1 0 3 3 5 7 5 8 0 7 6 4 1 8 0 0 4
� 60: 1 3 4 0 6 8 7 4 0 3 5 7 6 2 0 0
� 61: 1 3 4 0 6 8 4 7 0 5 2 6 8 2 0 0
� 62: 1 3 4 0 6 8 8 4 6 3 1 5 8 2 0 0
� 63: 1 3 4 0 6 8 2 8 4 6 0 3 7 0
� 64: 1 3 4 0 6 8 8 4 6 3 1 5 0 2 7 0
� 65: 1 3 4 0 6 8 2 4 6 8 0 8 0 4 3 0 0 5 6
� 66: 1 3 4 0 6 8 8 4 6 1 6 0 0 2
� 67: 1 3 4 0 6 8 8 4 6 1 0 7 3 0
� 68: 1 3 4 0 6 8 1 7 6 8 4 1 6 3 0 0
� 69: 1 0 3 5 3 8 5 7 5 0 8 1 4 0
� 6a: 1 0 3 3 5 7 5 8 0 6 7 4 1 0
� 6b: 1 0 3 5 6 8 3 8 0 5 2 7 4 0
� 6c: 1 0 3 5 8 5 3 5 8 0 7 4 1 0
� 6d: 1 0 3 5 6 8 3 7 0 2 5 4 7 0
� 6e: 1 0 3 3 5 7 7 6 1 8 4 0 6 4 3 7 0 0 5
� 6f: 1 0 3 3 5 6 5 8 8 6 0 1 8 4 6 0 0
� 70: 1 3 4 0 6 8 7 0 5 5 2 5 8 2 1 0
� 71: 1 3 4 0 6 8 2 4 7 6 0 3 7 4 0 8 0 0 4
� 72: 1 3 4 0 3 6 8 8 1 0 6 4 8 5 7 2 0 0 3
� 73: 1 3 0 4 6 6 8 0 4 5 7 2 8 5 0 3 6 0 0
� 74: 1 3 4 0 6 8 0 4 7 5 7 3 0 5 2 4 8 0 0
� 75: 1 3 4 0 6 8 7 4 0 5 7 1 3 8 2 5 7 0 0
� 76: 1 3 4 0 6 8 8 4 6 1 0 3 6 0
� 77: 1 3 4 0 6 8 8 4 6 3 0 6 8 5 0 2 0
� 78: 1 3 4 0 6 8 7 6 4 1 2 0 6 0
� 79: 1 3 4 0 6 8 2 7 6 0 5 3 6 8 4 2 6 0 0
� 7a: 1 0 3 5 6 8 3 5 0 8 7 4 2 0
� 7b: 1 3 4 0 6 8 8 4 0 6 4 1 8 0 2 6 0
� 7c: 1 0 3 5 6 3 8 0 5 8 7 4 2 0
� 7d: 1 3 4 0 6 8 7 4 6 0 3 6 8 0 5 1 0
� 7e: 1 0 3 4 1 6 8 7 4 6 6 0 3 8 1 5 0
� 7f: 1 0 3 3 5 7 5 8 7 0 6 4 2 8 0 0 4
� 80: 1 2 0 4 6 6 8 2 4 5 7 0 0
� 81: 1 2 0 4 2 6 8 7 6 2 4 6 0 8 1 0
� 82: 1 2 0 4 6 6 8 2 4 5 8 0 1 3 7 0
� 83: 1 2 0 4 6 6 2 8 2 0 4 8 6 7 0 2
� 84: 1 0 3 3 5 7 5 8 6 1 8 0 2 6 4 0
� 85: 1 0 3 5 8 3 5 5 7 0 7 1 8 0 2 4
� 86: 1 2 0 4 6 6 8 2 2 8 4 6 6 0 2 0
� 87: 1 0 3 3 5 7 5 8 0 7 2 7 4 0
� 88: 1 0 3 5 6 3 8 8 3 6 1 0 5 7 2 0
� 89: 1 0 3 5 6 8 3 7 1 4 7 8 0 2 5 0
� 8a: 1 0 3 5 6 8 3 8 6 1 2 5 8 0 3 0
� 8b: 1 0 3 5 7 5 3 6 8 2 4 0 7 0
� 8c: 1 0 3 5 7 5 3 6 8 1 6 2 0 2 7 0
� 8d: 1 2 0 4 6 6 8 4 3 0 7 7 3 5 0 8 4 1 0
� 8e: 1 2 0 4 6 6 2 8 2 8 4 6 0 6 7 4 0 2 0
� 8f: 1 0 3 3 5 7 5 8 8 5 0 1 7 4 6 8 2 0 0
� 90: 1 2 0 4 6 6 8 2 4 4 7 0 1 3 7 0
� 91: 1 2 0 4 6 6 8 2 4 5 7 8 2 3 0 0
� 92: 1 2 0 4 6 6 8 2 4 8 0 5 4 0 7 0
� 93: 1 0 3 3 5 7 7 5 8 2 4 0 6 0
� 94: 1 2 0 4 6 6 8 2 4 4 8 0 7 0 4 0
� 95: 1 2 0 4 6 6 8 2 4 7 4 2 0 7 8 3 5 0 0
� 96: 1 0 3 3 5 7 5 8 7 2 4 0 6 0
� 97: 1 2 0 4 6 6 8 2 4 8 5 0 2 7 8 3 0 5 0
� 98: 1 2 0 4 2 6 8 7 6 2 5 7 0 2 0 5
� 99: 1 0 3 5 7 3 5 6 8 0 4 1 0 6
� 9a: 1 0 3 3 5 7 7 5 8 4 0 6 1 0
� 9b: 1 0 3 5 6 8 3 8 6 1 4 7 0 0
� 9c: 1 2 0 4 6 6 8 2 4 7 5 0 6 3 8 4 2 0 0
� 9d: 1 0 3 5 7 5 3 6 8 1 7 4 0 0
� 9e: 1 0 3 5 6 8 3 6 8 1 4 0 0 6
� 9f: 1 0 3 5 6 3 8 8 6 1 3 0 7 5 1 0 6
� a0: 1 3 4 0 6 8 4 7 1 0 7 5 6 3 0 0
� a1: 1 3 4 0 6 8 7 4 1 6 0 8 2 5 1 0
� a2: 1 3 4 0 6 8 1 4 8 5 6 1 8 3 0 0
� a3: 1 3 4 0 6 8 8 4 6 3 0 0 7 0
� a4: 1 3 0 4 0 6 8 4 6 8 0 7 3 0 5 0
� a5: 1 3 4 0 6 8 2 4 6 8 0 1 4 7 8 5 0 3 0
� a6: 1 3 4 0 6 8 8 4 6 1 2 0 6 0
� a7: 1 3 4 0 6 8 8 4 6 0 0 3 7 0
� a8: 1 3 4 0 6 8 2 7 6 4 0 1 6 3 6 0
� a9: 1 3 4 1 6 8 0 7 6 3 5 1 7 8 0 1 5 3 0
� aa: 1 0 3 5 8 3 5 5 8 0 7 1 4 0
� ab: 1 3 4 0 6 8 1 4 8 6 7 1 3 0 6 1 7 4 0
� ac: 1 3 4 0 6 8 4 6 8 1 0 6 2 0
� ad: 1 0 3 4 1 6 8 7 4 5 7 1 0 8 4 3 6 0 0
� ae: 1 3 4 1 6 8 0 7 6 2 4 6 3 8 2 0 4 7 0
� af: 1 0 3 3 5 7 5 8 0 5 2 7 4 6 8 0 0
� b0: 1 3 0 4 0 6 8 8 4 7 5 0 6 3 0 0
� b1: 1 3 4 1 6 8 0 7 4 6 3 1 6 8 0 4 1 0 6
� b2: 1 3 4 1 6 8 0 4 8 2 7 5 7 1 0 4 0 2 6
� b3: 1 3 4 0 6 8 0 8 4 4 6 1 8 4 7 0 1 0 3
� b4: 1 3 0 4 0 6 8 8 4 7 4 6 1 0 5 8 3 0 0
� b5: 1 3 4 1 6 8 0 4 7 2 5 7 5 8 3 2 7 0 0
� b6: 1 3 0 4 6 6 8 0 4 8 5 1 6 3 5 8 0 1 0
� b7: 1 3 4 0 6 8 8 4 6 1 0 8 3 6 3 0 0
� b8: 1 3 4 0 6 8 7 6 4 1 0 2 0 6
� b9: 1 0 3 5 8 3 5 5 0 7 8 4 2 0
� ba: 1 0 3 5 6 5 3 8 8 0 7 4 2 0
� bb: 1 3 4 0 6 8 7 4 6 3 0 1 6 8 0 0 4
� bc: 1 0 3 5 8 5 3 5 8 0 7 4 2 0



� bd: 1 3 4 1 6 8 0 7 6 4 2 6 0 8 2 5 0
� be: 1 3 4 0 6 8 8 4 6 1 0 5 5 3 0 8 0
� bf: 1 0 3 3 5 7 7 6 8 5 1 7 2 0 3 6 0
� c0: 1 0 3 5 8 5 6 3 7 0 8 1 3 0 5 0
� c1: 1 2 0 4 6 6 8 2 4 5 7 1 8 3 0 0
� c2: 1 2 0 4 3 6 8 8 5 0 7 2 7 4 1 0
� c3: 1 0 3 3 5 5 7 7 8 0 7 1 3 0
� c4: 1 2 0 4 3 6 8 0 5 7 7 2 7 4 1 0
� c5: 1 0 3 3 5 7 5 8 7 0 7 1 3 0
� c6: 1 0 3 3 5 7 5 7 8 0 7 1 3 0
� c7: 1 2 0 4 6 6 8 2 4 8 5 0 7 2 8 0 3 5 0
� c8: 1 0 3 5 6 3 8 4 8 7 1 2 0 6 3 0
� c9: 1 0 3 5 3 8 5 5 7 0 8 1 3 0
� ca: 1 0 3 3 5 7 5 8 0 6 7 1 0 3
� cb: 1 0 3 3 5 7 5 7 8 1 7 2 6 0 4 8 0 3 0
� cc: 1 0 3 5 8 3 5 5 8 7 0 1 0 3
� cd: 1 0 3 5 7 5 3 6 0 8 3 6 2 4 0 2 7 6 0
� ce: 1 2 0 4 6 6 8 0 2 4 7 6 3 6 1 8 0 0 4
� cf: 1 0 3 5 4 1 6 8 8 6 1 7 3 0 2 0 6
� d0: 1 2 0 4 6 6 8 2 4 5 7 2 7 2 0 0
� d1: 1 0 3 3 5 5 7 7 8 0 1 3 0 6
� d2: 1 0 3 3 5 7 6 8 8 5 0 1 0 3
� d3: 1 2 0 4 6 6 8 2 4 5 7 2 8 1 0 0 3 5 6
� d4: 1 2 0 4 6 6 8 2 4 5 7 2 0 7 2 7 3 0 0
� d5: 1 2 0 4 6 6 8 2 2 4 7 0 5 7 2 8 0 0 4
� d6: 1 2 0 4 6 6 8 2 4 8 5 2 7 0 7 3 0 0 3
� d7: 1 2 0 4 6 6 8 2 4 5 7 0 8 2 5 1 0
� d8: 1 0 3 5 6 8 3 7 0 7 4 1 3 0
� d9: 1 3 5 0 7 3 7 5 0 6 8 1 3 0
� da: 1 0 3 3 5 7 7 5 8 1 0 4 3 5 8 7 3 0 0
� db: 1 2 0 4 2 6 8 7 6 2 4 6 0 8 1 4 0
� dc: 1 2 0 4 6 6 8 2 4 7 5 2 6 8 0 5 3 0 0
� dd: 1 0 3 5 6 3 8 5 7 7 0 8 1 3 0 0 4
� de: 1 0 3 3 5 7 5 8 0 7 6 1 3 0 8 4 0
� df: 1 0 3 3 5 7 5 7 0 7 1 3 6 8 1 5 0
� e0: 1 3 4 0 6 8 4 7 1 2 5 0 1 8 6 0
� e1: 1 3 0 4 0 6 8 4 6 8 5 2 0 0
� e2: 1 3 4 1 6 8 0 8 4 6 3 1 8 5 0 3 1 6 0
� e3: 1 3 4 1 0 6 8 8 4 6 1 7 3 0
� e4: 1 3 4 0 6 8 4 6 0 8 2 0 5 0
� e5: 1 3 4 0 6 8 2 4 6 0 8 3 6 8 2 6 4 0 0
� e6: 1 3 4 0 6 8 8 4 6 1 3 6 0 0
� e7: 1 3 4 0 6 8 8 4 6 1 0 3 8 6 3 0 0
� e8: 1 3 4 0 6 8 7 4 5 1 0 2 7 0
� e9: 1 3 4 0 6 8 1 7 6 6 4 2 5 0 8 0 0 2 4
� ea: 1 0 3 4 2 6 8 7 0 5 6 2 7 4 8 2 0 0 4
� eb: 1 0 3 3 5 7 7 6 8 5 1 0 2 5 8 2 0
� ec: 1 0 3 5 6 8 3 7 2 5 7 0 4 1 0 7 3 0 4
� ed: 1 0 3 5 6 8 3 7 1 5 0 7 2 4 1 0 6
� ee: 1 3 4 0 6 8 8 4 6 1 0 2 6 4 0 8 0
� ef: 1 0 3 3 5 7 5 8 7 0 6 4 1 1 0 8 4
� f0: 1 3 0 4 0 6 8 7 6 4 0 2 1 4 6 8 0 0 5
� f1: 1 3 0 4 2 6 8 6 0 4 7 5 3 1 7 8 3 0 0
� f2: 1 3 4 0 6 8 2 8 4 4 0 7 8 4 1 0 6 3 0
� f3: 1 3 4 0 6 8 8 4 7 0 5 1 8 0 2 4 0
� f4: 1 3 4 0 6 8 4 6 0 8 5 1 3 6 0 0 4 7 0
� f5: 1 3 4 0 6 8 4 6 8 0 5 0 2 8 4 1 0
� f6: 1 3 0 4 0 6 8 8 4 6 4 3 1 0 6 0 6
� f7: 1 3 4 0 6 8 8 4 0 6 4 7 1 0 6 3 0
� f8: 1 3 4 0 6 8 7 4 6 1 3 6 0 0
� f9: 1 3 4 0 6 8 7 6 4 1 3 0 5 8 0 4 0
� fa: 1 0 3 5 6 8 3 7 5 1 6 0 3 1 3 7 0
� fb: 1 3 0 4 0 6 8 7 4 6 2 6 8 0 1 5 0
� fc: 1 3 4 0 6 8 4 8 6 3 1 0 5 4 0 7 0
� fd: 1 3 4 0 6 8 4 6 8 0 2 4 8 6 2 0 0
� fe: 1 3 4 0 6 8 8 4 6 0 2 4 6 0 6 0 2
� ff: 1 3 4 0 6 8 4 8 6 1 2 0 5 8 0 4 3 6 8 0

0 4

An earlier version of this table did not fit neatly into
the column. Rather than fiddle with LATEX layout, I in-
stead expended significant CPU time to further optimize
the problematic rows until they would be short enough to
fit! This is the true spirit of typography.

3.1.3 Executing

Now that we have a solution for each byte, we want to play
the NES game to put the desired pattern in the playfield.
We use a NES emulator (my version of FCEUX [1] which
I’ve heavily modified for e.g. thread-safety) which allows
us to save and restore states, inspect RAM, and execute
frames much faster than real time.

We always input a fixed sequence of button presses to the
emulator to begin a game with the right starting pieces. We
then start executing the plan, which consists of the fixed
starting sequence (puts us in an empty board with in the
leftmost column) and then the concatenation of the plans
for the bytes we want to encode. All that is left is to place
pieces according to this plan, while ensuring that we get
the desired sequence of “random” piece drops.

At the start of each piece, we save the emulator state, and

then navigate the piece into the correct column. Holding
down on the D-pad causes the piece to drop as fast as pos-
sible. When it lands, if we got the correct piece by chance,
we just continue. Otherwise, we inspect the state of the
random number generator (right before the piece dropped),
and then simulate it using our reverse engineered version.
We tabulate the piece that would drop if we were to take
one additional frame to get here, then two, then three, and
so on up to some fixed horizon.14 We can then restore the
saved state and drop the piece more slowly (not pressing
down on the controller), delaying for the correct number of
frames to get the piece that we want. We can usually get
this exactly right on the first try, but if not, we try again
with slightly longer or shorter delays until successful. It is
also possible to pause the game [12] if the delay needs to
be longer than the natural descent of the piece, which can
happen when the game speeds up at later levels and the
pile is high.

3.2 Harder Drive: Tetru

We can now build a hard drive with Tetris. It’s called
tetru, following the convention from Section 2.15 The
setup is straightforward: The block size is 8 bytes, and
each block consists of a NES Tetris emulator. When we
first write a block, we allocate the emulator, load the Tetris
ROM, and use the procedure above to supply inputs to the
game. The driver is multithreaded so 16 concurrent Tetris
games can be in progress, although the block size is so
small that we need several serial passes to write one “nor-
mal” 512-byte sector. To read a block, we just inspect the
200 bytes of memory at 0x400. The byte 0xEF is an empty
cell (0) and any other byte is some part of a tetromino (1).

If we re-write a cell, we reset the emulator and start
again. It might be possible to clear the playfield by play-
ing the game (for example it would be straightforward to
precompute a plan that clears any bit pattern on a single
line, parity issues notwithstanding). But as the game gets
faster and faster we may be unable to drop pieces in the
correct locations, so it is safer to reset. This is something
the player can do anyway, so there is no loss of authenticity.

Finally, as an optimization, we also cache the input se-
quence that we compute for the 8 bytes the first time we do
it; if we write that same pattern again then we can just re-
play the inputs rather than search for them a second time.
Both the FAT12 directory structure and benchmark file
have many repeated patterns (especially 8× 0x00), giving
us a good cache hit rate of 46% during benchmarking.

Of course, there would be other ways to make this faster,
too. For example, just the pointer to the emulator object

14The longest possible drought before we see the desired piece (if
we missed it on the first attempt) is 98 frames (Figure 5). But it
is helpful to build in significant redundancy, since there are some
unusual situations where we cannot drop exactly on a desired frame,
and must overshoot.

15Also because Tetris is Russian and .ru is the TLD for Russia.
Classic retcon which I just nailed.



Figure 10: Playing a game of Tetris in the FCEUX emu-
lator, in which we loaded the tetris.nes ROM from the
tetru drive. The backdrop is a truncated portion of the vi-
sualization showing the contents of the 8,640 Tetris boards
being emulated. The upper portion is the FAT-12 header
and directory entries (it is mostly 0x00) and the lower por-
tion is the ROM data. I only have 100 points right now
but as you can see I am gearing up to complete some sweet,
high-scoring Tetrises.

for each block is 64 bits, or 8 bytes itself, suggesting a form
of “content-addressed storage.”

3.2.1 Results

In order to benchmark we need some file to write to the
filesystem. A beautiful choice is the tetris.nes ROM file,
which is 49,168 bytes. Though the minimal filesystem for
FAT12 requires a device with 51,200 bytes, there is signif-
icant overhead from the filesystem header, directory entry,
and so on. So to store this ROM we create a device with
69,120 bytes, which is 8,640 NES emulators. It is straight-
forward to scale to thousands of emulators, with the biggest
challenge being to fit them all on the screen for some kind
of visualization.

We benchmark as before, but then of course it is impor-
tant for aesthetic reasons to load the ROM that we stored
inside the drive to play a game of Tetris. Figure 10 shows
this in practice.

Qualitative. This is a good Harder Drive. It solves a
problem we don’t have, which is that typical hard drive
“blocks” are not made of actual “blocks,” but Tetris players
will recognize that the data on the drive is indeed made
from blocks. It is very satisfying to watch the thousands of
Tetris games drop pieces to encode the data.

Cost. Simulated on a computer, the up-front cost of stor-
ing data is fairly low. A basic 16-core desktop computer
is about $1,800 in 2022. The software NES emulator uses
1,652,372 bytes of RAM for Tetris on a 64-bit machine,
which is 650 instances per gigabyte. So we can store about

5200 bytes in about $4.37 worth of RAM,16 which is 0.084
cents per byte. This could easily be improved; the emu-
lators could be stored much more efficiently, because they
are all emulating the same ROM. If we built this with ac-
tual Nintendo hardware, we would need one NES Console
and one Tetris cartridge (or bootleg) per eight bytes. A
used NES runs about $150 and a Tetris cartridge about
$10. This is $20 per byte, which 24 thousand times more
expensive.

Longevity. The stored data lasts indefinitely, as long as
the computer (or Beowulf cluster of NES consoles) remains
powered.

Speed. Writing the 49,168-byte test file tetris.nes

takes 3 hours, 18 minutes and 52 seconds, for a data rate
of 2.57 bytes/sec. Due to its caching nature, writing to the
hard drive gets faster as it stores more data. Reading is
much faster at 61,430 bytes/sec.

Power. On a modern computer, a gigabyte of RAM uses
about 375 mW of power [10], so the marginal cost is 72 µW
per byte. The NES console uses about 10 Watts, which
would give us about 1.25 W per byte.

Is rotational? This drive is_rotational, because the
Tetris pieces are rotated to place them in the correct ori-
entation.

Harm to society. There is no harm to society for the
software emulation. If built on real NES consoles, hoard-
ing thousands of these machines and cartridges would be
considered antisocial, as they are historic items that are in
limited supply, and many people still enjoy collecting and
using them for their intended purpose.

4 Cue the coronavirus

Speaking of using things for their intended purpose: Sorry
to remind you about the worldwide pandemic still killing
thousands of people every day, but this section concerns a
hard drive made from COVID-19 tests.

SARS-CoV-2 is an RNA coronavirus first isolated in Jan-
uary 2020 [29]. Since it is highly contagious and can cause
severe illness (especially in the immune-näıve), testing is an
important part of the worldwide response. There are two
widely available approaches to testing: Lateral flow antigen
tests and PCR. Lateral flow tests detect a target molecule
(e.g. the SARS-CoV-2 spike protein) by binding a tagged
complementary molecule (antibody) to it as the sample
flows along a capillary bed. This is awesome. The tests
are fast and cheap. Polymerase Chain Reaction (PCR) [24]
tests work by amplifying a target sequence of DNA expo-
nentially. It heats and cools the sample in the presence of
a heat-stable DNA polymerase (typically Taq polymerase,
which was isolated from the thermophilic Thermus aquati-
cus bacterium) and a bubble-bath of nucleotides that can
be used to create more DNA. Each thermal cycle first un-
zips a double-stranded molecule into two pieces, and then

16In 2022, a Corsair 16GB DDR4 DIMM is only $70.



reassembles each one, doubling the target. Properly, the
tests are reverse transcription PCR [4], because first we
need to turn the viral RNA into DNA. PCR tests are more
sensitive (they can detect a single molecule) and specific
(they detect a particular genetic sequence). This is also
awesome.
Cue is a bougie COVID-19 test that launched in 2021.

The test consists of a reusable reader ($200) and a single-
use cartridge ($65 each!). Notwithstanding the eye-popping
expense, the system is pretty good. My employer provides
these tests for free (!), so I started collecting the used car-
tridges over the course of several months, and soliciting
them from my friends as well.

The cartridge itself (Figure 12) is fairly ingenious and
deserves to be disassembled.17 When you stick the nose
swab into the cartridge, it of course is delivering the snotty
sample, but the insertion force also mechanically actuates a
number of plastic thorns which pierce foil seals on reagent
ampules, allowing them to start their thing. The assay is
described as “nucleotide amplification,” which would sug-
gest something like RT-PCR, but since the cartridge does
not significantly change temperature during a test, it is
probably not literally PCR. LAMP [19] is a similar tech-
nique which is isothermal and seems like a credible choice.
Again it would be preceded by a reverse transcription step
to turn RNA into DNA. These things are all awesome and
deserve to be learned about; for example did you know
that the most frequently used reverse transcriptases (which
turns RNA into DNA to begin amplification) were isolated
from RNA viruses (which those sneaky bastards use to turn
their own RNA into DNA so that it can be transcribed by
the host)? So now we’re using virus machinery to detect
and fight other viruses? Hell yeah we are!

If you pull off all the chemistry pieces from the cartridge’s
endoskeleton, you’ll also find a tiny 8-pin microchip on-
board. And if you have a microscope you can read that
it says ST 24C04WP, which is a serial EEPROM [25]. An
EEPROM is a programmable ROM (so it is “read-only”
but also writable?). It is probably used to store the car-
tridge’s serial number, expiration, what kind of test it is,
and maybe calibration data. This stuff would be pretty
small, so it’s no surprise that the chip can only store 512
bytes. A dump of one of these ROMs is in Figure 11.

The EEPROM is an I2C device, so I could use pre-
existing code to send commands to it. Reading the EEP-
ROM is normal difficulty. I found writing to be more like
“hurt me plenty” difficulty: When you write a line, the
EEPROM drops off the bus temporarily (it may need to
do this because it is internally stepping up voltage for the
erase operation). You then have to either wait “enough
time” or poll it to see when it’s ready to write the next
line. What I did is to repeatedly try to read back the same
line we just wrote (this also allows us to check that the

17I recommend only disassembling a “negative” test, in case that
is not obvious. The typical reagents used in RT-LAMP are not par-
ticularly dangerous; for example Bst polymerase is “not hazardous”
according to OSHA, although it may be an “eye irritant” [2].
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Figure 11: ROM dump from a Cue COVID-19 test’s on-
board 512-byte EEPROM. After soldering tiny wires onto
the tiny pins and writing a driver for it, I had hoped to see a
secret message congratulating me on my steady hands and
the beginning of an Alternate Reality Game whose prize
was the inheritance of an eccentric billionaire (but who’s
got time for that?). Alas there is nothing that can be eas-
ily deciphered on here other than perhaps 20945H. Note
how much of the EEPROM is unused, but I’m glad they
sprung for 512 bytes, or else this project would not have
been so feasible.

data were successfully written). However, sometimes the
chip would come online during the read command, produc-
ing unpredictable results. Basically you have to be tolerant
of errors in some situations, but not too tolerant, or else you
don’t detect real failures. It gives me some sympathy for
terrible dedicated EEPROM programmers I have used [15].

4.1 Harder Drive: Cu

Having committed to the naming scheme where I replace
some of the last letters of the thing with the letter u, it
seems the best name for this drive is Cu. For one thing,
this is the chemical symbol for copper, and the drive uses
copper to function.

With the ability to read and write a single Cue cartridge,
the remainder is just a matter of straightforward engineer-
ing and tedious manual labor. Of course, you want to do all
of this on a manufactured printed circuit board (Figure 13).
The job here is to make it possible to individually address
a single EEPROM to read and write its data. Though I2C
does support multiple devices on the same bus, these chips
all have the same I2C address and so they would all try to
reply to the same commands. The ST 24C04WP EEPROM
does have “chip enable” pins that would allow it to share
a bus with others, by selectively enabling only the chip of
interest. Unfortunately, these pins are not connected to
any of the exposed connectors on the cartridge. Instead, I
use a bus switch (which is basically this same “chip enable”



Figure 12: Mechanical drawing of the Cue COVID-19 test cartridge. The protruding stick is the nasal swab, which is
permanently captured during use with zip-tie–like ratcheting. The card edge connector is the low tolerance piece here,
whose small size (0.05 inch pitch with 1.1mm fingers) requires special consideration for mounting and soldering. (In its
normal usage, this connector mates with some spring-loaded pins when the cartridge is inserted in the Cue reader.)

circuitry) to connect each EEPROM to the I2C bus. Each
SN74CBTLV3125 is a quad bus switch, so I can switch
the two I2C lines (SDA, SCL) for two Cue cartridges with
each chip. Then, we can select one of 8 cartridges (a sin-
gle daughter board) with a demultiplexor, which takes 3
address bits and sets exactly one of its 8 output lines to
0. For decorative purposes, I associate a colored LED with
each cartridge; this LED foolishly ends up accounting for
most of the components on the board and most of the as-
sembly time, since I also have to build logical NOT gates
(demultiplexor outputs logical 0). Finally, the cartridges
themselves are very tricky to incorporate. They have very
small plated connectors that normally mate with spring-
loaded pins in the reader, but that component is not read-
ily available (and would probably be expensive). Instead, I
mount it at 90◦ through a hole in the PCB, where the PCB
has its own matching edge connector made with castellated
holes. I also 3D printed a plastic jig that could hold the car-
tridge at the right angle during soldering. With generous
acid flux and a steady hand, soldering these worked quite
well. Only 4 pins need to be connected (3v3, GND, SDA,
SCL) but I also soldered some distal pins, since these joints
are the only mechanical connections for the cartridges.

The motherboard has its own demultiplexor to select the
daughter board, as well as an ad hoc pair of “group selec-
tor” pins wired directly to GPIO. Together it supports 7-bit
addresses, for up to 128 cartridges, which is 64 kilobytes. I
did not collect enough used tests to fill the address space,
but I did connect 72 of them, which is enough to do some-
thing interesting at least! Except . . .

4.2 Failure!

I blew it! Literally! On the evening of the SIGBOVIK
deadline, in an attempt to be simultaneously expedient and
careful, I soldered the Cu motherboard while it was plugged
in, and fully toasted it and the connected Raspberry Pi. My
best guess is that the soldering iron had a very different
idea of “ground” than the device under test. It made an
upsetting pop noise, an upsetting burn smell, an upsetting
spark and smoke sight, an upsettingly warm touch,18 and it
made it impractical to fix before the paper is due. You can
at least see what the tabletop device looks like in Figure 14.
It should be possible to replace the Pi and motherboard,
so perhaps the by the accompanying video or talk I will be
able to finish the task and get some benchmark numbers.

18I did not attempt to taste it; the board is not RoHS-compliant due
to the copious lead used. Despite the panoply of upsetting sensations,
the obviousness of the failure was a blessing that saved me time trying
to debug! Even if I plug the Pi in on its own, it makes a pathetic,
obviously unhealthy whine. It is so dead.



Figure 13: The two-layer printed circuit board for the Cue
drive. Because the boards must be ordered in quantity, one
board contains the layout for both the motherboard (used
once) and daughter boards (used many times). On the far
left is the motherboard, for example the header for inter-
facing with the Raspberry Pi and the 3:8 demultiplexor for
selecting a daughter board. These parts are only populated
once. The remainder is the daughter board: Eight cutouts
for cue cartridges mounted at 90◦ with castellated edges;
an LED and support logic for each; the surface-mount bus
switch ICs; another 3:8 demultiplexor for selecting the car-
tridge on this board. The design can accommodate 16
daughter boards, each with 8 cartridges, for a total of 64
kilobytes.

4.2.1 Results

We need a file to store on the drive to tie the knot and to run
the benchmark. A beautiful choice here is the genetic se-
quence of SARS-CoV-2 (ancestral) [30] from GenBank [5].
This is a 29903 base-pair sequence, but we need not store it
in ASCII.19 Each nucleotide is only two bits of information,
so we pack four of these into each byte for only 7476 bytes.

Qualitative. This is a decent Harder Drive. It solves a
problem we don’t have, which is what to do with all those
COVID-19 tests that we’d otherwise just throw away? It
took significant effort to create, although most of the diffi-
culty was from problems (e.g. how to solder these tiny pins)
that are not interesting from a computer science perspec-
tive. EEPROMs are fundamentally data-storage devices,
so this usage of them cannot be considered clever, but ar-
raying dozens of them to create a modest-sized non-volatile
memory that could be easily replaced with a single 30-cent
NAND Flash IC is at least “very silly.” Mucho demerits
because I broke it during the final assembly.

Cost. The cost is significant. The up-front cost is a Rasp-
berry Pi 3 (nominally $35), accessories, and a demultiplexor
IC ($0.60), plus scrap plywood for mounting. Then, per
board, we have the following bill of materials:

19Plus, I’m a biology noob and I may just be missing something,
but GenBank uses “T” in this sequence even though it should be U
(uracil) in RNA, which seems very non-canonical?

Figure 14: Assembled Cu drive with 72 Cue cartridges.
Imagine trying to explain to someone that this homemade
thing that has “COVID-19” written on it 72 times, and
has got all sorts of colored wires everywhere, is not some
instrument of bioterror. In fact it does not even drive hard:
In my rush to meet the preposterously strict SIGBOVIK
deadline, I fried the Raspberry Pi and motherboard (per-
haps you can see that multiple LEDs are lit on the mother-
board, which clearly violates invariants). Fortunately due
to its modular design, it can likely be fixed with a few more
hours of manual labor.

Qty. Part no. Description Price ea. Total

8 Cue L2900006 Used COVID-19 Test $65.00 $520.00
1 custom 2-layer PCB 162x92mm $5.766 $5.766
2 497-2340-5-ND Transistor array IC $0.5768 $1.154
4 SN74CBTLV3125 Bus switch IC $0.6636 $2.654
2 2N3904 NPN BJT transistor $0.09 $0.18

20 jellybean 10kΩ resistor $0.0155 $0.31
8 jellybean 845Ω resistor $0.02428 $0.194
8 jellybean 3mm LED 2v 20mA $0.01499 $0.12
1 CD74HC137E 3:8 demultiplexor IC $0.6048 $0.605

$530.98

This does not include consumables like solder and hook-
up wire, nor the considerable time to assemble each board
(about 1 hour with practice).

We need 13 boards to store a full FAT12 filesystem, for
a total cost of $6,936.04. The marginal price per byte is
12.96 cents.

Longevity. This is the only drive considered where data
are retained when powered down. The M24C04-W EEP-
ROM is rated for 200 years of data retention, and 4 million
write cycles [25]. At the current pace, this is likely to out-
last the human race.

Speed. Unknown as of publication! As described in Sec-
tion 4.2, the motherboard was damaged on the eve of the
deadline and no benchmark was conducted. Reading the
EEPROM is fast, but writing a block takes a few hundred
milliseconds. The speed is expected to be high (for the
drives considered here).

Power. The up-front power cost is low; we need to power
the Raspberry Pi and various chips on the boards. Only
one of the decorative LEDs is lit at a time, using about



1 mW. The total is about 3 Watts. The marginal power
cost is excellent: On the Cue cartridge, only the EEPROM
is powered. During standby it uses no more than 3 µA at
3.3 V, which is 9.9 µW for 512 bytes, or 19.3 nW per byte.

Is rotational? This drive is not rotational; it provides
us SSD-like random access to the Cue cartridges, and the
EEPROMs on board allow random access to each line of
data.

Harm to society. Arguably, the drive is beneficial to
society. First, it is built mostly from trash. Second, coron-
avirus testing prevents death or other hardship by inform-
ing infected people that they may be contagious; at a min-
imum it is good for the spirit by facilitating lower-anxiety
gatherings. Finally, since the tests contain captured body
fluids, this adds an all-too-rare “human element” to com-
puting.

5 Other hard drives we really
didn’t need

Here are some things I hate: (1) The name of TDAmeri-
trade’s stock trading app, which is “thinkorswim.” This is
of course a play on the idiom to “sink or swim,” meaning
metaphorically to toss someone into deep water to survive
by their own efforts, or else drown. The analogy is certainly
apt for an app that lets consumers trade derivatives, but
the obvious problem here is that if it is “think or swim,”
then we are now asking the subject to survive by their
own efforts (swim) or else “think”? Huh? Or is it that
they must think carefully about their trades, or else they
will survive? Wha? (2) Poison ivy. This plant has no
purpose other than to make you itch. It doesn’t even get
anything out of that trick, since I wasn’t going to eat it
anyway. Nevertheless it spreads. (3) Cryptocurrency. I
have no objection to the use of cryptography in finance, but
there aren’t enough vomiting emojis in Unicode to appro-
priately react to the current hype. Cryptocurrency signif-
icantly harms the planet while taking advantage of many
people’s technical and financial illiteracy.20

20Note to cryptocurrency apologists: This short section does not
have room for a full criticism, nor would such a thing be “fun” enough
for SIGBOVIK. Briefly, there are five principal problems. (1) Proof
of Work is incredibly wasteful (see the stats below; this is just one
of the cryptocurrencies). Of course I am aware of “Proof of Stake.”
I remain very skeptical that miners with large capital investments
in (otherwise useless) ASICs will be willing to salvage them, but I
would gladly celebrate this and by all means, please do make this
happen. (2) I believe that regulation of finance is good, both formal
regulation with law and self-regulatory organizations like FINRA, as
well as informal practices like rolling back erroneous transactions or
returning stolen funds, which are regulated indirectly by the desire
to maintain valuable public reputations. Unregulated markets have
many problems (insider trading, etc.) and avoiding regulation mostly
seems to be useful for tax evasion and other crimes. (3) In attempt to
avoid “decentralization”, control is nonetheless effectively centralized
in the hands of a small number of actors anyway (large-capacity min-
ers and exchanges). However, these actors are set up as adversarial,
or at best as some kind of wild-West “disruptors.” I’d trust these
skeezy guys way less than I trust banks, and rightly so: They rou-

Nonetheless, the common prefix between “block device”
and “blockchain” is hard to avoid noticing, and a head-to-
head comparison may be instructive. So I put on incognito
mode, a VPN, an N-95 mask and six condoms in order to
research some numbers for this section.

Bitcoin is “append-only” by design, so it does not have
the same abstraction as other Harder Drives. For com-
parison sake, we consider a usage where the head of the
blockchain contains the full data; a write is accomplished
by mining a new block and a read is accomplished by read-
ing from the current head. For Bitcoin, the block size is
1 Mb, and the network automatically adjusts to mine a sin-
gle block every ten minutes. I did not actually implement
this drive, both because of the gag reflex and because I do
not have that kind of money!

Qualitative. Despite hating it, I must admit that Bit-
coin meets the criteria for a Harder Drive pretty well. It
solves a problem that we don’t have, by imagining a world
where we cannot agree on a small set of trustworthy par-
ties, a majority of which must be acting in good faith. Its
approach is elegant in the small but for its obvious fatal
flaws, and comically absurd if taken to its logical extreme.
It is impressively inefficient, and grows less efficient over
time. In short, it would make a solid SIGBOVIK paper.
The only problem is that people are actually using it in
seriousness, and the social problems that result from the
value it has attained.

Cost. The cost is extremely high. The reward for min-
ing one Bitcoin is currently 6.25 BTC, plus an average of
about 0.97 BTC in transaction fees, which totals $342,000
in March 2022. This gives us an approximate upper bound
on the cost to mine (by assuming the marginal cost is prof-
itable) a block, which is 34.2 cents per byte. This does not
include the up-front cost of hardware and facilities, which
is of course monumental.21

Longevity. The data has excellent longevity, in fact, it is
impossible to erase previous data once written. Of course,
“forks” of the chain can make it unclear what version of
the data is correct, or if > 50% of the untrusted miners

tinely front-run transactions, just as one example. (4) The space is
riddled with Ponzi schemes and scams, as exemplified (but certainly
not limited to) NFTs. This is plainly immoral. (5) Cryptocurrency
aficionados are insufferable, presumably because they feel like they
need to convince you to get in on their tokens so that they grow in
value (which presumably they hope to then sell to get real money).
I get an enormous amount of cryptocurrency spam. The only words
I’ve muted on Twitter other than five green Unicode squares are cryp-
tocurrency terms, and this has improved the experience greatly. If you
are a cryptocurrency aficionado reading this that feels like you need
to “educate” me about how I am misinformed (despite what I can
clearly see in front of me!), case in point. That said, I will happily
discuss interesting ideas with informed computer scientists over beer.

21Nor the surrounding apparatus like “bitcoin ATMs” and “crypto
exchanges” (the kind of stuff that apologists are talking about when
they tell you that “regular money uses a lot of electricity too!”), al-
though it is probably not fair to count these as part of the cost when
used as a pure data storage mechanism.



disagree, they can change the data at will.

Speed. The network is slow, although not the slowest
considered here. It takes an expected ten minutes to write
1 Mb of data. This is a data rate of 1,747 bytes/sec, ap-
proximately the speed of a 14.4 kbaud modem.

Power. The power usage is incredibly high. Mining Bit-
coins uses about 0.31% of the entire world’s energy produc-
tion, 15.74 GW [6]. Remember that this does not solve any
interesting computational problems or accomplish anything
useful; the only purpose is to create an expensive waste of
power in order to avoid trusting a bank or set of banks. To
store one megabyte on an ongoing basis, this is 15.74 kW
per byte.

Is rotational? It’s not even rotational!

Harm to society. The harm to society is significant.
Aside from the catastrophic waste of resources, the pri-
mary use case is speculation (at best morally neutral, but
probably tends to harm small investors). As a slow, expen-
sive, non-atomic yet irrevocable payment mechanism, they
are best suited for extortive transactions like Ransomware.

6 Conclusion

In this paper, we decided that sometimes it’s more fun to
do things the hard way, and then did so. Using several dif-
ferent techniques and some needless digressions, we created
block devices that could support small filesystems, which
then could host a fitting file. Each filesystem was bad when
considered as a regular hard drive, but good when consid-
ered as a Harder Drive. We also compared these drives to
the most popular cryptocurrency. The idea was to make
the point that cryptocurrency is so egregiously bad that
it resembles a “SIGBOVIK joke gone wrong” more than
something one would make on purpose. This part may not
have been as fun.
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