
Linear Type Systems for Communication

Tom Murphy VII

18 Dec 2001

Abstract

Enhancing the type system of a programming language brings benefits on many fronts. We define and
explore a simple concurrent functional language in a linear typing discipline, showing how more powerful
types can lead to more controlled interaction between threads.

1 Introduction

A type system serves many purposes in a programming language. A type system excludes
dangerous programs. It may make implementations more efficient. Type systems can be
descriptive, helping to explain how or what code does. Types may also be prescriptive,
enforcing the manner in which code is used by a client. A more sophisticated type system
typically leads to benefits in all of these categories, by allowing types to be more expressive.

This project is primarily interested in the prescriptive nature of types. By enhancing the
type system of a simple concurrent functional language with linear types, I show how it is
possible to enforce precise communication protocols in client code.

This paper consists of sections as follows: First, an introduction to linear types and
the LinML programming language with an emphasis on programmer’s intuition; a formal
description of LinML’s type system and dynamic semantics; a series of examples of how
linear types can be leveraged for a concurrent functional language; and a discussion of
related work. An SML implementation of a LinML typechecker and interpreter are included
as an appendix.

2 LinML and Linear Types

LinML is a an extension of MinML [1] (a modest subset of the SML core language) with
concurrency primitives and linear types.

The intuition behind linearity is that variables of linear type must be used exactly once.

1

One way for such variables to be introduced is as an argument to a linear function (whose
type is written with the (symbol):

f1 , lfn x : bool => x

f2 , lfn x : bool => x andalso x
f3 , lfn x : bool => true

f4 , lfn x : bool => if true then x else x

f1 has linear type bool -o bool, as it uses its argument x exactly once. f2 and f3 are
ill-typed, as they use x too many and too few times, respectively. Though x appears twice
in f4, intuition tells us that exactly one will be actually used (this is the case even if the
condition expression is not trivial); f4 also has linear type bool -o bool.

The linear typing discipline leads to new interpretations of other familiar type constructs.
For instance, all the fields of a record (tuple) must be used exactly once:

t1 , { l1 = true,

l2 = lfn x : bool => x,
l3 = false}

t2 , lett {l1 = a, l2 = b, l3 = c} = t1
in

if a then b ^ c else c andalso b ^ true

end

Here, ^ stands for application of a linear function. t1 is a tuple expression and has type
{l1 : bool, l2 : bool -o bool, l3 : bool}. lett breaks apart a tuple, and each
variable (a, b, c) must be used exactly once in the body.

In a lazy record, the programmer must choose exactly one field to project:

l1 , lfn x : bool => <l1 = x, l2 = not x>
l2 , #l2 (l1 ^ true)

l1 has type <l1 : bool, l2 : bool>. #fieldname chooses a field from a lazy record.
Since the programmer will ultimately only choose one field, it is acceptable to have linear
variables re-used in each field. In fact, all fields must use exactly the same set of linear
variables.1 None of the fields are evaluated until one is projected out.

Sums work essentially as they do in MinML:
1LinML leaves out the > connective, since it did not seem very useful for these kinds of programs and it complicates

type-checking, especially with n-ary labelled records and sums.

2

s1 , inj(SOME, [SOME : bool, NONE : {}], true)

s2 , casev s1 of

SOME => if v then print "Yes" else print "No"

| NONE => v

s1 injects true into the SOME branch of the sum, and has type [SOME : bool, NONE :

{}]. The case construct binds the same variable v in all arms. (Like lazy tuples, all arms
must use the same set of resources since exactly one will be chosen.) print outputs a string
and returns the empty record.

It is possible to program in the standard unrestricted style by using the exp operator. If
an expression uses no linear resources, then it can be bound to a variable that can be used
as many times as desired:

b1 , exp (lfn x : bool => x)
b2 , use id = b1

in id (id true)

end

b1 has type !(bool -o bool). id can be used arbitrarily often in the body of the use

expression.

Finally, LinML has primitives for concurrent programming:

c1 , chan string

c2 , lett {r=rc, s=sc} = c1

in spawn (lfn x : {} =>

lett {data = s, channel = c} = recv rc
in print s;

close c;
x

end);

let ns = send (sc, "Hello")

in close ns
end

end

c1 has type {s = schan string, r = rchan string}; it returns a pair of channels, one
for sending and one for receiving. spawn takes a function of type {} -o {} and creates a
new process running in parallel with the current process. The process that is spawned here
takes the receiving end of the channel (rc) with it. recv takes an rchan τ and returns a
tuple {data : τ, channel : rchan τ}. Since channels can only be used once, recv also
returns a new channel for the next datum. close shuts down a receiving or sending channel.
Finally, send takes an schan τ and a τ and returns a new channel. In the example above,

3

the original thread sends the message "Hello" to the newly spawned thread, which prints
it.

3 Type System

This section gives a formal description of the type system.

τ ::= bool | string | rchan τ | schan τ
| τ1 -o τ2 | τ1 -> τ2

| !τ | ∀ t.τ | t
| {l1 = τ1, ..., ln = τn} (n 6= 1)

| <l1 = τ1, ..., ln = τn> (n > 1)

| [l1 = τ1, ..., ln = τn] (n ≥ 1)

A type is well-formed (ok) if it does not contain free variables and does not have duplicate
labels:

Θ ` bool ok Θ ` string ok

Θ ` τ ok
Θ ` rchan τ ok

Θ ` τ ok
Θ ` schan τ ok

Θ ` τ1 ok Θ ` τ2 ok
Θ ` τ1 (τ2 ok

Θ ` τ1 ok Θ ` τ2 ok
Θ ` τ1 → τ2 ok

Θ ` τ ok
Θ ` !τ ok

t ∈ dom(Θ)

Θ ` t ok

Θ, t ` τ ok

Θ ` ∀t.τ ok

Θ ` τ1 ok . . . Θ ` τn ok i 6= j ⊃ li 6= lj
Θ ` {l1 = τ1, . . . , ln = τn} ok

Θ ` τ1 ok . . . Θ ` τn ok i 6= j ⊃ li 6= lj
Θ ` [l1 = τ1, . . . , ln = τn] ok

Θ ` τ1 ok . . . Θ ` τn ok i 6= j ⊃ li 6= lj
Θ `< l1 = τ1, . . . , ln = τn > ok

The basic typing judgment is

4

Θ; Γ; ∆\∆0 ` e : τ

Θ is a set of type variables. Γ is a partial mapping from (unrestricted) variables to types.
∆ and ∆0 are partial mappings from linear variables to types. The judgment says that under
Θ, Γ, and ∆, the expression e has type τ but leaves resources ∆0. An entire program is only
well-typed if ∆0 is empty.

Θ; Γ; ∆\∆ ` s : string Θ; Γ; ∆\∆ ` b : bool

Θ; Γ; ∆, x : τ\∆ ` x : τ Θ; Γ, x : τ ; ∆\∆ ` x : τ

Θ; Γ; ∆\∆1 ` e1 : {} Θ; Γ; ∆1\∆2 ` e2 : {} . . . Θ; Γ; ∆n−1\∆′ ` en : τ

Θ; Γ; ∆\∆′ ` e1; e2; . . . ; en : τ

Θ; Γ; ∆, x : τ\∆0 ` e : τ ′ x /∈ ∆0

Θ; Γ; ∆\∆0 ` lfn x : τ ⇒ e : τ (τ ′
Θ; Γ; ∆\∆0 ` e1 : τ ′ (τ Θ; Γ; ∆0\∆′ ` e2 : τ ′

Θ; Γ; ∆\∆′ ` e1 ê2 : τ

Θ; Γ, f : τ (τ ′; x : τ\∅ ` e : τ ′ τ ok τ ′ ok

Θ; Γ; ∆\∆0 ` lfix f(x : τ) : τ ′ is e : τ (τ ′

Θ; Γ, f : τ → τ ′, x : τ ; ∅\∅ ` e : τ ′ τ ok τ ′ ok

Θ; Γ; ∆\∆0 ` fix f(x : τ) : τ ′ is e : τ → τ ′

Θ; Γ; ∆\∆0 ` e1 : τ ′ → τ Θ; Γ; ∅\∅ ` e2 : τ ′

Θ; Γ; ∆\∆0 ` e1 e2 : τ

Θ; Γ; ∆\∆0 ` ec : bool Θ; Γ; ∆0\∆′ ` et : τ Θ; Γ; ∆0\∆′ ` ef : τ

Θ; Γ; ∆\∆′ ` if ec then et else ef : τ

Θ; Γ; ∆\∆0 ` e : string

Θ; Γ; ∆\∆0 ` print e : {}
Θ; Γ; ∆\∆0 ` e : {}({}
Θ; Γ; ∆\∆0 ` spawn e : {}

Θ; Γ; ∆\∆0 ` e : schan τ

Θ; Γ; ∆\∆0 ` close e : {}
Θ; Γ; ∆\∆0 ` e : rchan τ

Θ; Γ; ∆\∆0 ` close e : {}

τ ok
Θ; Γ; ∆\∆ ` chan τ : {s : schan τ, r : rchan τ}

Θ; Γ; ∆\∆0 ` e1 : schan τ Θ; Γ; ∆0\∆′ ` e2 : τ

Θ; Γ; ∆\∆′ ` send(e1, e2) : schan τ

5

Θ; Γ; ∆\∆0 ` e : rchan τ

Θ; Γ; ∆\∆0 ` recv e : {channel : rchan τ, data : τ}

Θ; Γ; ∆\∆0 ` e1 :!τ ′ Θ; Γ, x : τ ′; ∆0\∆′ ` e2 : τ

Θ; Γ; ∆\∆′ ` use x = e1 in e2 end : τ

Θ; Γ; ∆\∆0 ` e :< . . . , f : τ, . . . >

Θ; Γ; ∆\∆0 ` #f e : τ

Θ; Γ; ∆\∆1 ` e1 : τ1 . . . Θ; Γ; ∆n−1\∆′ ` en : τn

Θ; Γ; ∆\∆′ ` {l1 = e1, . . . , ln = en} : {l1 : τ1, . . . , ln : τn}

Θ; Γ; ∆\∆0 ` e1 : τ1 . . . Θ; Γ; ∆\∆0 ` en : τn

Θ; Γ; ∆\∆0 `< l1 = e1, . . . , ln = en >:< l1 : τ1, . . . , ln : τn >

Θ; Γ; ∅\∅ ` e : τ

Θ; Γ; ∆\∆ ` exp e :!τ

τ ok τ = [. . . s : τ ′ . . .] Θ; Γ; ∆\∆0 ` e : τ ′

Θ; Γ; ∆\∆0 ` inj(s, e, τ) : τ

Θ; Γ; ∆\∆0 ` e : [s1 : τ1, . . . , sn : τn]
Θ; Γ; ∆0, v : τ1\∆′ ` e1 : τ . . . Θ; Γ; ∆0, v : τn\∆′ ` en : τ v /∈ ∆′

Θ; Γ; ∆\∆′ ` casev e ofs1 ⇒ e1|...|sn ⇒ en : τ

τ ok Θ; Γ; ∆\∆0 ` e : ∀t.τ ′

Θ; Γ; ∆\∆0 ` e[τ] : [τ/t]τ ′
Θ, t; Γ; ∆\∆0 ` e : τ

Θ; Γ; ∆\∆0 ` tfn t.e : ∀t.τ

Θ; Γ; ∆\∆0 ` e1 : τ ′ Θ; Γ; ∆0, x : τ ′\∆′ ` e2 : τ x /∈ ∆′

Θ; Γ; ∆\∆′ ` let x = e1 in e2 end : τ

Θ; Γ; ∆\∆0 ` e1 : {s1 : τ1, . . . , sn : τn}
Θ; Γ; ∆0, x1 : τ1, . . . , xn : τn\∆′ ` e2 : τ x1 /∈ ∆′ . . . xn /∈ ∆′

Θ; Γ; ∆\∆′ ` lett {s1 = x1, . . . , sn = xn} = e1 in e2 end : τ

4 Dynamic Semantics

The dynamic semantics are very straightforward. First, we define what a value is:

s value b value exp e value

e value
inj(s, e, t) value SC l value RC l value

6

lfn x : τ → e value lfix f(x : τ) : τ ′ is e value fix f(x : τ) : τ ′ is e value

tfn t.e value

e1 value . . . en value

{l1 = e1, . . . , ln = en} value < l1 = e1, . . . , ln = en > value

A process is an evaluation context (a stack of frames) and an expression. An evaluation
context is a continuation; it has a hole (2) to be filled in with the result of evaluating the
expression. A program is a collection of processes running in parallel along with a state. We
define a stepping relation on individual processes (frame, exp, state) ; (frame, exp, state).
This relation also includes the global state (a list of channel locations and their status)
because some evaluation steps modify it.

(•, v, st) ; ∅
({s1 = v1, . . . , s = 2} / fr, v, st) ; (fr, {s1 = v1, . . . , s = v}, st)

({s1 = v1, . . . , s = 2, sm = em, . . .} / fr, v, st) ;
({s1 = v1, . . . ,
s = v, sm = 2, . . .} / fr, em, st)

(send(2, e) / fr, v, st) ; (send(v, 2) / fr, e, st)
(close / fr, SC/RC l, (st, l Open)) ; (fr, {}, (st, l Closed))

(close / fr, SC/RC l, (st, l Closed)) ; (fr, {}, st)
(lett {s1 = x1, . . . , sn = xn} = 2 in e end / fr,

{s1 = v1, . . . , sn = vn}, st) ; (fr, [v1 . . . vn/x1 . . . xn]e, st)

(let s = 2 in e end / fr, v, st) ; (fr, [v/s]e, st)
(print / fr, s, st) ; (fr, {}, st)

(use s = 2 in e′ end / fr, exp e, st) ; (fr, [e/s]e′, st)
(2 e, fix f(x) is e′, st) ; (fr, [fix f(x) is e′, e/f, x]e′, st)

(2 ê, v, st) ; (vˆ2 / fr, e, st)
(lfix f(x) is ê 2 / fr, v, st) ; (fr, [lfix f(x) is e, v/f, x]e, st)

(lfn x ⇒ ê 2 / fr, v, st) ; (fr, [v/x]e, st)
(2[τ] / fr, tfn t.e, st) ; (fr, [τ/t]e, st)

(if2 then et else ef / fr, true, st) ; (fr, et, st)
(if2 then et else ef / fr, false, st) ; (fr, ef , st)

(inj(s, 2, t) / fr, v, st) ; (fr, inj(s, v, t), st)
(#f2 / fr, < . . . , f = e, . . . >, st) ; (fr, e, st)

(casex 2 of . . . s ⇒ e . . . / fr, inj(s, v, t), st) ; (fr, [v/x]e, st)
(2; e / fr, {}, st) ; (fr, e, st)

(2; e1; . . . / fr, {}, st) ; (2; . . . / fr, e1, st)

7

(fr, let s = e1 in e2 end, st) ; (let s = 2 in e end / fr, e1, st)
(fr, e1; . . . , st) ; (2; . . . / fr, e1, st)

(fr, print e, st) ; (print2 / fr, e, st)
(fr, e1e2, st) ; (2 e2 / fr, e1, st)

(fr, e1 ê2, st) ; (2 ê2 / fr, e1, st)
(fr, e[τ], st) ; (2[τ] / fr, e, st)

(fr, if ec then et else ef , st) ; (if2 then et else ef / fr, ec, st)
(fr, {s = e, . . .}, st) ; ({s = 2, . . .}, st)
(fr, inj(s, e, t), st) ; (inj(s, 2, t), e, st)

(fr, #f e, st) ; (#f2, e, st)
(fr, lett {...} = e in e′ end, st) ; (lett {...} = 2 in e′ end, e, st)

(fr, casex e of . . . , st) ; (casex 2 of . . . / fr, e, st)
(fr, send(e1, e2), st) ; (send(2, e2) / fr, e1, st)

(fr, recve, st) ; (recv2, e, st)
(fr, use s = e1 in e2 end, st) ; (use s = 2 in e2 end, e1, st)

(fr, chan τ, st) ; (fr, {s = SC l, r = RC l}, (l Open, st)) (l new)

(fr, close e, st) ; (close2 / fr, e, st)
(fr, spawn e, st) ; (spawn2 / fr, e, st)

Now, we define a transition relation � on programs.

(fr, e, st) ; (fr′, e′, st′)
(. . . ‖(fr, e)‖ . . . , st) � (. . . ‖(fr′, e′)‖ . . . , st′) (1)

(. . . ‖(spawn2 / fr, v)‖ . . . , st) � (. . . ‖(fr, {})‖(vˆ2 / •, {})‖ . . . , st) (2)

(l′ new)

(. . . ‖(send(SC l, 2) / fr, v)‖ . . .
. . . ‖(recv 2 / fr′, RC l)‖ . . . , (st, l Open))

� (. . . ‖(fr, SC l′)‖ ‖(fr′, {data = v,
channel = RC l′})‖ . . . , (st, l′ Open)) (3)

(. . . ‖(send(SC l, 2) / fr, v)‖ . . . , (st, l Closed)) � (. . . ‖∅‖ . . . , st) (4)

(. . . ‖(recv2 / fr, RC l)‖ . . . , (st, l Closed)) � (. . . ‖∅‖ . . . , st) (5)

(. . . ‖∅‖ . . . , st) � (. . . ‖ . . . , st) (6)

The first rule allows a ; transition on any process in the program. 2

Spawn (2) simply creates a new process in the program, applying the function to the
empty record.

2The scheduler is meant to be “fair” in the usual sense, but this is difficult to capture in a rule without specifying the
scheduling policy directly. The LinML implementation included has a fair scheduler.

8

If two processes are ready to synchronize on a send, then the transaction can proceed.
(3) Note that the channel location is removed from the state; no other process has access to
this channel because the send and receive halves are linear. (A clever implementation might
allocate l′ to be equal to l!)

If one end of the channel has been closed (4, 5), then a process trying to receive from
or send to it will be blocked forever. This process can be collected. (6) Note however that
the semantics do not attempt to detect mutually-blocked threads (deadlock), as it seems
pointless to optimize for what is usually considered a mistake. It should be straightforward
to adapt the techniques from the next section in order to avoid deadlock altogether.

5 Specifying Protocols

In this section we’ll see how to code up simple transition systems in linear types in order to
enforce a protocol.

Suppose that you are writing some LinML code for a large non-deterministic string printing
program. You fear that a particular co-worker who can’t follow directions always violates
the pre-arranged protocol for communicating between his module and yours. He is always
reading and writing in the wrong order and sharing channels with friends. You want to set
up the program in such a way that his module won’t even compile if it doesn’t communicate
with yours properly.

LinML has rather primitive modularity features; your module is a function that takes his
module as an argument. It will then instantiate type arguments and pass it the operations
it needs to run.

Let’s start with a very simple protocol:

1. Client sends a string to the Server (a password)
2. Client receives a bool from the Server (was the password correct?)
3. Done.

Your code will require that the client code have the following type:

∀ key1, key2, key3, done . {c0 : key1,

c1 : ! ({1 : string, 2 : key1} -o key2),

c2 : ! (key2 -o {1 : bool, 2 : key3}),
c3 : ! (key3 -o done)}
-o done

The types keyn are abstract to the client. They represent the steps of the protocol as
numbered above. The key power that linear types give us is the ability to ensure that the

9

client posesses only one token of a keyn type at a time! Therefore, if it is type-correct then
it follows the protocol described.

The server implements the argument record {c0, ...} as follows. All of the key type vari-
ables are instantiated at the same type: {str : schan string, boo : rchan bool}.
Thus the functions c1, c2, c3, have access to a channel for sending strings and one for re-
ceiving bools. c0 gets these from the environment (the server process has the other ends of
the channels). Here’s the code for c1:

exp (lfn q : {1 : string, 2 : {str : schan string, boo : rchan bool}} =>

lett {1=ss, 2=k} = q
in lett {str=str, boo=boo} = k

in let newstr = send (str, ss)
in {str=newstr, boo=boo}
end

end

end)

Note that sending produces a new channel, which is packaged up as part of the new key.
c2 is similar, and c3 simply closes both channels. A fully verbose implementation of this
example is included in the source code (ex.sml).

Now, for this simple example, we could alternately provide a linear argument of type
string -o bool, which is much more tasteful. (In fact, it is easy to code up a function of
that type from the record provided above.) Consider a new protocol:

1. Client sends a string to the Server (version identifier)
2. Client sends a string to the Server (query)
3. Client receives a bool from the Server (response)
4. Client sends a string to the Server (quit message)

OR
Client repeats from step 2

5. Done.

This doesn’t have a straightforward representation as a function, but is easily represented
using our transition system:

∀ key1, key2, key3,

key4, done . {c0 : key1,

c1 : ! ({1 : string, 2 : key1} -o key2),

c2 : ! ({1 : string, 2 : key2} -o key3),

c3 : ! (key3 -o {1 : bool, 2 : key4}),
c4 : ! (key4 -o key2),

c5 : ! (key4 -o done)}
-o done

10

It is equivalent, but a little more linear-logicesque to use lazy records:

∀ key1, key2, key3,

key4, done . {c0 : key1,

c1 : ! ({1 : string, 2 : key1} -o key2),

c2 : ! ({1 : string, 2 : key2} -o key3),

c3 : ! (key3 -o {1 : bool, 2 : <k2 : key2, k4 : key4>}),
c4 : ! (key4 -o done)}
-o done

It’s possible for the server to make choices as well. Consider this protocol:

1. Client sends a string to the Server (version identifier)
2. Server sends a boolean to the client (to step 4)

OR
Server sends a string to the client (to step 3)

3. Client sends a bool to the server
4. Server sends a string to the client.
5. Done.

∀ key1, key2, key3, key4

key5, done . {c0 : key1,

c1 : ! ({1 : string, 2 : key1} -o key2),

c2 : ! (key2 -o [inl : {1 : string, 2 : key4},
inr : {1 : bool, 2 : key3}]),

c3 : ! ({1 : bool, 2 : key3} -o key4),

c4 : ! (key4 -o {1 : string, 2 : key5}),
c5 : ! (key5 -o done)}
-o done

6 Conclusions

The behavior that these types describe is a partial correctness property: if the threads
terminate, then they will have followed the protocol. It may be quite devastating still
to have non-responsive threads that deadlock themselves or spin in a loop. This kind of
property detracts from the power of linear types especially because we can not necessarily
rely on our resources being used, even though it is very tempting to think we can. On the
other hand, concurrent programs are often meant to run indefinitely; in these situations,
partial correctness is quite apt.

The definition of the language requires that unrestricted application is call-by-name.
Without this, it would be possible to duplicate channels (chan τ is well-typed in the empty
linear context). I don’t know a better solution to this.

11

It would be interesting to see if these ideas can be made more convenient or efficient.
One problem is that the abstract key types actually carry data; though it seemed to me at
first that I should be able to use trivial tokens (like {}), this was the only way I could get it
to work out. Perhaps it would need a more sophisticated module system such as Standard
ML’s.

6.1 Related Work

• Kobayashi et al. [2] give a linear type system for the Pi Calculus [3]. In their system,
channels are also marked with their direction (sending or receiving), and multiplicity
(how many times it can be used). Their system is aimed towards a more “foundational”
calculus, so they do not include as many connectives.

• Wadler [4] applies a similar treatment to a MinML-like language for the purpose of
modelling imperative features like arrays. His type system is somewhat peculiar; my
approach is much more closely related to the propositions in linear logic.

References

[1] R. Harper. Programming languages: Theory and practice (draft). 2001.

[2] Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Linearity and the
Pi-Calculus. ACM Transactions on Programming Languages and Systems,
21(5):914–947, 1999.

[3] R. Milner. Communicating and mobile systems: the pi-calculus, 1999.

[4] P. Wadler. Linear types can change the world! In M. Broy and C. Jones, editors, IFIP
TC 2 Working Conference on Programming Concepts and Methods, Sea of Galilee,
Israel, pages 347–359. North Holland, 1990.

12

