A Symmetric Modal Lambda Calculus for Distributed Computing *

Tom Murphy VII Karl Crary Robert Harper Frank Pfenning
Carnegie Mellon Carnegie Mellon Carnegie Mellon Carnegie Mellon
tom7@cs.cmu.edu crary@cs.cmu.edu rwh@cs.cmu.edu fp@cs.cmu.edu

Abstract Just as propositional logic is concerned wviithth, modal
logic is concerned with truth relative to differemorlds

We present a foundational language for distributed pro- The worlds are related by aaccessibility relationwhose
gramming, called Lambda 5, that addresses both mobility properties distinguish different modal logics. We will ex-
of code and locality of resources. plain our choice of accessibility relation below.

In order to construct our system, we appeal to the pow- Modal logic is generally concerned with two forms of
erful propositions-as-typesterpretation of logic. Specifi- propositionsJA, meaning that is truein every (accessi-
cally, we take th@ossible world®f the intuitionistic modal ~ ble) world and< A, meaning thatd is truein some (ac-
logic 1S5 to be nodes on a network, and the connecfives cessible) world Our computational interpretation realizes
and < to reflect mobility and locality, respectively. these worlds as the nodes in a network. Because our model

We formulate a novel system of natural deduction for IS5, is a computer network where all nodes can communicate
decomposing the introduction and elimination rules for ~ with each other equally, we choose an accessibility refatio
and <, thereby allowing the corresponding programs to be that is reflexive, symmetric, and transitive, which leads to
more direct. We then give an operational semantics to our the intuitionistic modal logic IS5 [15]. A value of typeA
calculus that is type-safe, logically faithful, and congut represents mobile code of typéthat can be executed at
tionally realistic. any world; a value of type> A represents the address of
a remote value of typel. To illustrate our interpretation,
we present some characteristic true propositions in IS5 and
their intuitive justifications.

OA D A —Mobile code can be executed.

OA D OOA — Mobile code is itself mobile.

A D ©A —We can create an address for any value.

OOA D OA —We can obtain a remote address.

O A D OCA — Addresses are mobile values.

OOA D OA — We can obtain a remote mobile value.

The last two provable propositions are especially rele-

1 Introduction

The popularity of the Internet has enabled the possi-
bility of large-scale distributed computation. Distribdt
programming is especially popular for scientific computing
tasks. The goal of this paper is to present a foundational
programming language for distributed computing. Scien-
tific computing tasks often require the physical distribati

of computational resources and sensing instruments. To pe/ant, anq are only true because our accessibility relasion i
relevant, our language must address both the mobility 0f.symmetnc. These theorems are actually some standard ax-

code and the locality of fixed resources ioms for a Hilbert-style presentation of 1S5. We opt for a
Due to aesthetic considerations, we wish to take ajudgmental presentation, so all of these are provable propo

propositions-as-typesterpretation of an appropriate logic sitions in Lambda 5. In section 4.1 we look at t_he actual
to form the basis of our programming language. More- proof terms for some of these sentences and their computa-
over, since the type systems of realistic languages such aélonal cr(])nter;]t. hand. the followi ble:

ML and Haskell come from the same source, our constructs On the other hand, the following are not provable:

will smoothly integrate with such languages. We argue that 7 A 2 DA —Notalllocal values are mobile.

intuitionistic modal logic forms an excellent basis for-dis 7 ©A > A —We cannot obtain all remote values.
tributed computing because of its ability to representiapat ~ Simpson, in his Ph.D. thesis [15], provides an account of
reasoning. intuitionistic modal logic based on a generic m_ultlpl_e-mor
semantics. Two aspects prevent us from using his formu-
*The ConCert Project is supported by the National Sciencendtion under ; ; ; H ; :
grant ITR/SY+SI 0121633: “Language Technology for Trusti&oftware Dissemi- lation @rgctly. FI!’St, his system I? generahzed .tO suppor
nation.” accessibility relations that are arbitrary geometric tieso

For our use of IS5, there is no useful computational content“exists” when writing judgments for brevity. We only con-
to a proof that two worlds are related. We therefore dispensesider judgments that are well-formed in the following sense
with judgments of the accessibility relation and simply-col All world variables that appear attached to assumptions or
lect a list of worlds that are mutually interaccessible. in the conclusion are present§h?
The second issue requires a more significant change. We define the meaning of our logical connectives by
Simpson’s rules act non-locally in the sense that they oftenway of introduction (marked) and elimination (marked)
use assumptions from one world to conclude facts in an-rules. Introduction rules state the conditions under which
other world. This leads to proof terms that are inefficient at formula involving the connective is true. Elimination rale
best, and at worst do not even fit our computational model. state how we can use a formula involving the connective
(In section 4.4 we make this comparison concrete.) Ourwhose truth we know. As discussed earlier, we have in ad-
solution here is to decompose the rules for theand ¢ dition special rules that encapsulate the mobility of darta
connectives into restricted rules that act locally, andiomt connectives, which also contribute to the definition of thei
rules which extend our reasoning across world boundaries meaning.
In doing so we nonetheless preserve the duality of the con- We consider only implicatiortg), necessity{) and pos-
nectives and the desirable logical qualities, as demdestra sibility (<). As discussed in section 5, conjunction and truth
in section 3. are easy to support, while disjunction and falsehood requir
The remainder of the paper proceeds as follows. We be-further consideration for a satisfactory operational sema
gin the first half by presenting our logic in judgmental style tics.
and proving standard properties about it. We then presenta The entire natural deduction system is given in figure 1.
sequent calculus based on Simpson’s IS5 which admits cutThese rules include proof terms, which will be necessary for
and is equivalent to our system of natural deduction. This the operational semantics (section 4). They can be ignored
yields a strong normal form theorem for our system of nat- for the present discussion.
ural dedUCtion, Va”dating its dESign. In the second half of The hypothesis rule and rules for imp"cation are stan-
the paper we present the operational semantics of Lambda %jard. They act locally in the sense that the warltemains
based on a network abstraction. For this semantics we showhe same everywhere.
typg safety and present several examples. We conclude with |, order to prove that a proposition is true everywhere,
a discussion of related work and plans for the future. we prove its truth at a hypothetical world where nothing is
This paper has a forthcoming companion technical reportknown but its existence. This explains theintroduction
[9] with most proofs in full detail. The relationship betwee ryle. TheD elimination rule states that ifiA is true here
natural deduction and Sequent formulations of |85, as well (meaningA is true everywhere) thed is true here. Note
as the admlSS|b|I|ty of cut and the normalization theorem thatOFE is different from Simpson’s Corresponding rule and
have been have been mechanized in the Twelf system [12jnly strong enough in conjunction with tHetchrule ex-

and verified using its metatheorem checker [14]. plained below.
For & we have the dual situation. K holds here, then
2 Judgmental Lambda 5 we know it is truesomewhergthis is & introduction. &

elimination states that if we know A, then we can rea-
Il th loai h relati d son as ifA holds at some hypothetical world about which
Recall that our logic expresses truth relative to worlds. ihing else is known. Both of these rules have unusual re-

Following Martin-L6f [7], we employ the notion ofBypo- gyiction when compared to other systems:<if premise
thetical judgmentwhich is an assertion of judgment under 4 .onclusion are at the same world i first and sec-

certain assumptions. The judgments that capture our notiory 4 premise (and therefore also the conclusion) are at the
of truth at a particular worldhave the form same world

Q;T'F Atrue Qw Finally, we have rules that explicitly represent the mo-
ility of O and © terms. Thefetchrule states that iff A
olds atw, then it holds at another world’, provided that

w’ exists. In other words, ifl is true everywhere from the
perspective of one world, then it is true everywhere from
the perspective of any other world. Similarfetstates that

if A is truesomewherdrom the perspective of one world,

This judgment expresses that under the assumptions irﬁ
I" and (2, the proposition4 is true at the worldv. T is a
set of assumptions of the form : A; true Qw; where all
variablesz; are distinct. Reasoning about truth at worlds
requires reasoning about worlds. For S5, the only thing
we need to know about a world is that it exists, @ds

a set of assumptions of the form exists where all vari- 2We could ensure this as a theorem by adding a well-formedrass
ablesw; must be distinct. However, we elidértie” and dition onT" under$ in the hypothesis rule. To simplify the discussion
we take the common shortcut of ruling out ill-formed conseftom the
1They can be found atttp://www.cs.cmu.edu/concert/ . beginning.

QT FN:AQw

QI z: AQw - M : A/Quw OTHM: A D AQuw wen
T F e A>Aaw L arr N Aaw 2 F GTe:Aew o Aaw PP
w'fresh Q,w;T'FM: AQW weN Q;T'F M : 0AQw we QTHM:OAQY
Q; T Fbox o.M : OAQw oI Q; T Funbox M : AQw DE O;TFget (W)YM: CAQw get
W' fresh QT'FM: O AQw
Q,w;I' 2 AQw' = N : BQw QT+ M : AQw weN UTHM:0AQW

I QT+ fetch [0 : OAGw &N

Q;T'kFletd w'.o=Min N:BQuw oF O; T+ here M : CAQw

Figure 1. Lambda 5 natural deduction

then it is also true somewhere from the perspective of any D
other existing world. Qw,w;TF AQw’)

It's worth noting thagetandfetchare the source of sym- Q,w; T F DAQw o7 [w/é_d D
metry in Lambda 5. They are what allow us to prove the 0,0 T F AQw OF =R QW ' AQw

characteristic S5 axioméOA D OA andCA D OCA.

Operationally, all communication on the network will be |f\we derive A at a hypothetical fresh world (calling this

encapsulated in these two rules. derivationD), and then us& A to concludeA@Qw, we can
Because we have a hypothetical judgment, we expect toreduce this to a direct use @ by our world substitution

have a substitution principle that allows us to “fill in” as- principle, abbreviated here &s/w’|D.

sumptions with proofs. The reduction for> is similar, employing both world and

regular substitution:
Theorem 1 (Substitution)

If D:OQ;THM: AQw D
and € : QT z: AQwF N : BQw' Q;I‘F‘A@w &
then F: T+ [M/z]N : BQw'. QAT F oAGw oI 0, T, 2:AGw’ - BAw
. OF
Proofis by structural induction on the derivati&nomit- %BIrE i@w
ted here. R
Similarly, because we have assumptions about the ex- [D/a]lw/w|E
istence of worlds, we have a world substitution principle, ;T F BQw

which is also a theorem of our logic.
Here we write[D/«] for an application of the substitution

Theorem 2 (World Substitution) principle to[w/w’|€, which is itself the result of world sub-
If w e stitution.
and E&:Quw;T'F M: AQuw” Note that neither local reduction accounts for the mo-
then F:[w'/w](TF M : AQuw") tion rulesget andfetch The global soundness property

in section 3 shows that this is not problematic. We omit
Here we mean the substitution to apply to the entire judg- the standard reduction fap. Note that under the Curry-
ment, particularly the world in the conclusion. Proof is Howard isomorphism the action of the local reductions on

again by structural induction ofy, omitted here. proof terms forms the core of the operational semantics.
We also have the familiar principles of weakening and The counterpart to local soundness is local complete-
contraction, for both world and truth assumptions. ness. This ensures that our elimination rules are not too

For each connective, we require the properties of local weak—if we have a derivation of a formula using the con-
soundness and completeness. Local soundness ensures nective, we can apply our elimination rules in such a way
that our elimination rules are not too strong—if we intro- as to reintroduce the formula. Though local completeness
duce a connective and then immediately eliminate it, we holds for our logic, we omit the proofs here because they do
can find justification for our conclusion. This is also called not have an interesting computational meaning.
alocal reduction As implied by their names, local soundness and com-

The reduction foiZ is as follows: pleteness give us only a local guarantee that our logic makes

sense. In fact, local soundness is weaker than usual bewe can extend or limit our logic to different sets of con-
cause of our motion rules. Though we see thatfollowed nectives without affecting the provability of propositsin-

by OF is justified, what about an intervening sequence of volving those connectives.

fetchrules? The global check comes by way of equivalence It is now a relatively simple matter to validate the cor-
to an appropriate sequent calculus. Because sequent calcuectness of our natural deduction system. First, we have to
lus proofs have a particular form, this gives us immediate show that every proposition that has a proof (in natural de-
theoretical and philosophical results. The following &att duction) has a verification (in the sequent calculus). This i
proves this correspondence. The operational interpogtati the global analogue of the local soundness property. Sec-

(section 4) does not depend on it. ond, we have to show that every proposition that has a veri-
fication, has a verification where tivét rule is applied only
3 Sequent Calculus to an atomic proposition. This is the global analogue of the

local completeness property, ensuring that the left rules a
strong enough to derive, w; ', AQw — AQw by decom-
We establish a (cut-free) sequent calculus SS5 with theposingA all the way to its atomic constituents. We omit the
following basic judgment: latter property since it is entirely straightforward, bylirc-
O:T — AQu tion on the structure oAl.

This judgment states that with truth assumptidheand Theorem 4 (Equivalence of Lambda 5 and SS5)
world assumptions?, the propositionA is true atw. The QTFAQw iff T — AQuw.

rules of the sequent calculus SS5 are given in figure 2. Note
that this calculus admits non-local reasoning intheand

O R rules, and lacks the maotion rules from natural deduc-
tion. Itis a version of Simpsonkg« (7) specialized to the
case of interaccessible worlds (1S5).

The sequent calculus still admits world substitution,
which is straightforward and therefore omitted here. It is
also immediate to prove that weakening and contraction
are admissible rules which do not change the structure of
a derivation. The substitution principle for derivationgts
into the admissibility of cut, which states that a proof of
AQu licenses us to usd@Qw as a hypothesis.

Each direction is proved by structural induction on the
input derivation. In the Lambda 5 to SS5 direction, we use
the cut theorem for SS5. These two proofs have also been
fully formalized and checked in Twelf.

We can exploit the computational content of this meta-
theoretic proof to translate an arbitrary natural dedunctio
the sequent calculus and then back. Analysis of the proofs
of theorem 4 shows that the resulting natural deduction will
satisfy a strong normal form. This normal form satisfies the
subformula property and can be constructed using only in-
troduction rules bottom-up and only elimination rules top-
down until an assumption matches the conclusion. More-
over, thefetchrule needs to be used only immediately above
a OF rule. Similarly, theget rule needs to be used only
immediately before the left premise oKaF rule or imme-
diately below aC T rule. Therefore we claim that the de-
composition of the introduction and elimination rules into

]] o . local rules and movement rules has not destroyed the logi-
The proof proceeds by a simple lexicographic induction 4 reading of deductions.

on (in order) the cut formula, the derivationD, and the The sequent calculus makes it easy to see that some

derivation&, following Pfenning [10]. To reduce extrane- ,qpositions are not provable. Working bottom-up, we see

oust and < formulas we ne_e_d Worl_d substitution. This hat the propositiord S OA is unprovable after apply-

proofis new and has been verified using the Twelf metathe- ing > R andOR, and being left with no rules to continue.

orem checker. Itis presented in full detail in the forthcom- Similarly, after a’n application ab R and<L, we see that

ing technical report [9]. ©A D Alis also unprovable. Decidability of IS5 is another
Each rule in the sequent calculus, when read bottom-gasy consequence [15].

up, proceeds by decomposing the principle connective of a8 Haying justified Lambda 5 as a logic, we now switch

proposition of the sequent in the antecedent (bsferule) gears to its interpretation as a type system for a distribute
or the succeedent (byraght rule). Unlike natural deduc- programming language.

tion, a sequent derivation therefore embodies what Martin-
Lof calls averification a canonical proof of a proposition
which proceeds only by analysis of the proposition to be
proved. This gives us an important orthogonality condition

Theorem 3 (Admissibility of Cut (SS5))
If D: Q' — AQuw
and & :Q;T, AQw — BQw’
then F: Q;T — BQw'.

4 Operational I nterpretation

We can associate a programming language with our logic
3Simpson [15] used an indirect proof via natural deduction by viewing propositions as types and proofs of those propo-

O, A D BQw — AQuw
;T A D BQw, BQw — CQw’ T, AQw —s BQuw

0.1, A> Baw — Caw’ ~ " 0.7 — A5 Baw

o R Quw;I' AQw — AQuw Init

W' fresh Q,w; T, 0AQw, AQw — CQw"” oL Q,w; T — AQw’
QT 0 AGw — Caw” Owl — odaw O

Q,u; T, 04AQw, AQw — CQw" - w' fresh Q,w,o’;T — AQuw’
Q,0"; T, 04Qw — CQw" Q,w; I — DAQw

OR

Figure 2. Sequent calculus SS5

sitions as programs. Note that in both RPC forms we must send the téino

Our operational semantics defines an abstract ma-the remote host. Though this term hasr < type, itis an
chine: a network and the steps of computation of a arbitrary expression, not yettmx orw./. In this sense all
program distributed among its nodes. Because we fo-code must be “mobile;” however, we are able to distinguish
cus on distributed—as distinguished from concurrent— between mobile code that can be transmitted to only one
computation, our abstract machine is sequential and deterlocation (AQw) and code that is universally mobile 4).
ministic. The network consists of a fixed number of hosts In order to ground our discussion of the operational ma-
namedw;. Each world has associated with it some state de- chinery, we present in the next section some examples of
scribing its execution context (explained later) and agabl Lambda 5 programs and their intended behavior.

This table stores mappings from labélf values. These
labels, when paired with the world name, form a portable 4.1 Examples
address that others can use to refer to this value.

Before we describe this machine in detail, we revisit ~ As examples, we revisit several of the axioms informally
the previously ignored proof terms from figure 1. These explained in the introduction.
proof terms form the external language of Lambda 5. As Let’s look again at the symmetry axiohOA O OA.
remarked previously, we give the following computational We consider this our key example, because it encapsulates
interpretation to our connectives. As usual, values of type the notion of moving mobile code from some other location
A D B are functions fromA to B. Values of typeJA are to our location. Here is a Lambda 5 proof term for it:
pieces of quoted code that can be run anywhere to produce
a value of typed. A value of ©A takes the formw./—a Az.letd w.y=wzinfetch [wv]y
pair of a world name and label. This is an address of a table
entry atw containing a value of typd.

The proof term ford[is box «’.M. It binds the world
variablew’ within M, which must be well-typed at’. We
do not attempt to evaluate under thex . Straightfor-
wardly,unbox instantiates the hypothetical world with the
actual current world and then evaluates the contents of th

This term deconstructs the diamond to learn the world
at which the mobile code exists, and thfetctes it to the
current world.

The axiom(¢A D OB) D O(A D B)is provablein any
intuitionistic logic, regardless of the acessibility rida.*

cHere is the proof term, assuming that it lives.at

box . The termfetch [w’]M performs a remote procedure Af.boxX w' Ay.
call (RPC), executing the codd atw’ and then retrieving unbox (fétch W] (f(get (') here y)))
the resulting value, which must hatetype. ‘
The introduction form foK> is here M. Operationally, This proof is a bit surprising. We takg, which lives

we will evaluate the termd/ and insert the value in atable atw. The boxed code takes: A, which lives atw’. We

at the current world. It will be given a new label, and the then switchbackto w in order to applyf; to do so wegeta
address will bew.(. The elimination formjetd w.z = A fromw’. This back-and-forth is inevitable because we
Min N evaluates M to one of these pairs, and then binds cannot applyf until ¢ A is true, and® A is only true once
variables for the label and world for the purposes of evalu- we begin to prove the boxed conclusion.

ating V. W(.)rld-label pal.rs make,sense g.IOba"y' SO We are “However, it is not provable iconstructivemodal logics such as the
able to retrieve them witiget (w’) M, which behaves as judgmental S4 due to Pfenning and Davies [11] where negeissiaken
fetch but returns a value o type. to mean provability witmo assumptions.

Let'’s take a look at the “shortcut” axio®C A D O A. continuations can span multiple worlds. This arises from
the RPC mechanisms. For instance, suppose we evaluate
Ar.letd o'z =ringet (w')x fetch [w/|M atw. To do so, we suspend our current work
] at w and begin a new continuation aw to evaluateM.
The program simply follows>G A to the place where the hottom of this continuation will besturn — w, which
©Als true, and retrieves that address vget _ awaits a value to return to our old continuatiomat
The other symmetry axiot?A > 0O A has two differ- Because RPCs can be reentrant in the sense that code
ent proofs that are each interesting. These proof terms arg,e invoke in one world may in turn invoke code back in
well-typed ato: the original world, we may have multiple outstanding con-
tinuations. However, because the computation is serial, a
stack of pending continuations suffices. So, a continuation
k is a stack of frameg with eitherreturn w or finish
at its bottom. A continuation stack' is simply a list of
In the first proof, we deconstruct the diamond and repub- Pending continuationsiinish is the very bottom of the
lish it atw’ each time the box is opened. This keepsut entire network-wide continuation, and when reached repre-
of the loop at the expense of redundant table entries. In theSents the final answer of our program.

second proof, we do not republish the address but simply Now we can discuss network configurations. A configu-
getit from w. rationW is a mapping from world constants to their current

In section 4.4 we justify our decomposition by com- continuation stacks and tables. The configuration changes
paring some of these proof terms to a hypothetical systemas a program is executed; the continuation stacks grow and

1. Az.letd W' y==x
inbox w”.get (w')(here y)
2. Az.box w'.get (w) x

where the rules act non-locally. shrink, and the table monotonically accumulates new val-
ues. However, the domain 8 remains constant.
4.2 TypeSystem A network stateN is a configuration paired with a cursor.

The cursor is of the fornw : [k, M] and represents the cur-

The syntax of our type system and operational semantics€Nt focus of computation. The expressibhis currently
is given in figure 3. As mentioned, we give specific names, pendlng _evalqatlon, the contlnua'_mkrls the currently ac-
w, to hosts in our network. Because we still have hypotheti- fivé continuation, and the world is where the computa-

cal worldsw (for the introduction of1 or elimination of¢), ~ tion is taking place. The world must of course be in the
we have world expressions (written as a Romgrwhich configuration, but the continuatidgndoesnotappear in that
range over bothy andw. world’s continuation stack.

The class of expressions is the same as prooftermsin our The final point of the syntax is the configuration type
logic except for the appearance of labélswWe have seen This simply describes the “type” of the network by mapping
labels as a component of an address of tppke These val- ~ World constants to table types.
ues of diamond type are well-typed at any world. In com- The natural deduction system given in section 2, with
parison, “disembodied” labelkare well-typed only in the proofterms, can be thought of as the type system foexhe
world where their table lives. For example, suppose there isternal languagenf Lambda 5 programs. However, we must
a resource of typel in the table at worldv, . If the label? extend this type system to talk about networks, tables, and
refers to that resource, then it will have tyg@w;,. On the continuations in order to state properties about our attstra
other hand, the address ./ can have type> AQw,—at a machine. To do this, we need a number of new judgments.
different world. The typing judgmeni; ;" - M : AQw simply ex-

As aresult, a term that is physically present at one nodetends the natural deduction judgment to incorporate config
may nonetheless contain components that are only welltypes and world expressions. The definition of the well-
typed at other worlds. One consequence of our safety theformedness conditiol; Q) + w is omitted for space. It is
orem is that these subterms will only be evaluated in the straightforward: world variables are well-formed whenythe
appropriate worlds! are inQ) and world names are well-formed when they are in

The tables at each world)(are just mappings from la- the domain of the configuration type. We also omit the
bels to values. The type of these tables,ia mapping from definition of ¥ F ¢ : A@Qw, which simply ensures that's

labels to types. entry inX maps/to A. The last omitted definition is of table
Our abstract machine is continuation based. For in- well-formednessy. - b@Qw. A table is well-formed when
stance, an attempt to evaluate an applicatibN will result it contains exactly the same labels as its table type claims,

in ao N frame being pushed onto the continuation. This and each of the values has the correct type ubidé&te will
continuation expects a lambda value, at which point it will define the continuation typing judgmext- W; k& : AQw,
begin evaluatingV. New in our system is the idea that which says that the continuatign(and configuratioriv)

types A, B OA|ADB|<B

configs W — Wy (OB,) values v m= Ax.M | box w.M | w.£
contstacks C = x| C:k
networks N = Wyw: [k, M] .
conts k& == return w | finish | k< f
tables b = eo|bl=v
) frames f = o N |v o | here o| unbox o
configtypes ¥ == {wy:7g, - ,W; 7})
table types T = e|Tl:A | letd wa=oin N
’ exps M,N := v |MN |z]|{¢]| fetch [w]M
worldexps w = w]|w
world vars w world names w | here M| get (w)M .
| unbox M| letd wax=Min N
labels ¢ value vars x,y
Figure 3. Syntax of Lambda 5 type system
expects values of typg at worldw. there must exist a mediating type such that the current

All of these judgments are used to conclude well- expressionV/ has that type and the current continuation
formedness for an entire network state, which is writfen expects it.
N. The type system reuses the rules from Lambda 5 natural With the typing rules in hand, we can give a dynamic se-
deduction (figure 1) with the following changes. First, we mantics to network states that explains the evaluationssf di
systematically change each judgmentof - M : AQw tributed programs. Our dynamic semantics takes the form
to X:; ;T - M : AQw, except in theOI rule, where of a stepping relatior- that relates pairs of network states.
the premise must still be concluded at the new hypotheti- Its definition is given in figure 6.
cal worldw’. Second, world existence conditionse (2 Much of the dynamic semantics is standard for a
are replaced by the world expression well-formedness con-continuation-based abstract machine. The reductionoule f
dition X; Q = w. Finally, we add a number of new rules unbox (10) instantiates the mobile code with the current

from figures 4 and 5, including new typing rules far/¢ world. When we encounter a label (11), we look it up in
and disembodied, calleddia andlab. the current world’s table and proceed with that value. To
Typing of continuations is fairly straightforward. Recall publish a value (9), we generate a new label and add the
that the judgment records the typepectedy the contin- mapping to our table. The resulting address is our current
uation, not the type it produces. The most interesting rule world paired with the label.
is the rule forreturn w. This rule ensures that the con- The reduction fotetd (13) substitutes both that world
tinuation stack atv is non-empty, and that its outermost constant and the disembodied label into the body of the
continuation expects the same type as iibirn . Via letd . Note that our substitution must work on expressions,
this rule the continuation typing conditiamwindsthe en- ~ namely labels. We can't evaluateyet because we are not

tire network-wide continuation. Also worth noting is that necessarily in the correct world.

thefinish continuation is well-formed regardless of any Finally, the RPC rules are interesting. Evaluating a
junk that may remain in the continuation stacks in the rest fetch [w']M atw (7) means saving the current continu-
of the network. (This is an arbitrary choice and does not ation atw, and beginning a new continuation to evaluate

affect type safety.) M atw’ with return w at its bottom. The rule foget
(8) is essentially the same. Reduciegurn ~ w (6) simply
S={wyir,eo Wi 1< < moves the value tav, resuming with its outermost continu-
W = {Wl : <Cl,b1>,"' S, Wi © <Cl,bz>} ation.
YEb@Qwy; --- X bQw; A programming language is only sensible if it is type
Y- F M AQw; YWk AQw; safe, that is, if a well-typed program has a defined meaning
SEWw, : [k, M] in terms of evaluation on the abstract machine. In the next
section we give the type safety theorem, which is proved in
Figure 5. Network typing the forthcoming companion report. We then give a compari-

son to a hypothetical system where the rules act non-lacally

Finally, we have the network typing judgment (figure 5).
The networkW;w; : [k, M] is well formed under some 4.3 Type Safety
config typeX if several conditions hold. BothV and X
must have the same domain, awgd must be in that do- Type safety is the conjunction of two properties, progress
main. Each of the tables W must be well-formed, and (theorem 5) and type preservation (theorem 6). Progress

SHEW ko CAQw

YEWk:AQw X F N AQw

¥+ W; finish

SH:Aaw X QFw YWk AQw

:AQw Y W; k < here o: AQw

YFEFW;k<o N: AD AQw
SEFW;k:BAQw Y;w;x: AQwF N : BQw

YT Fwd: OCAQw dia
Y4 AQw

YW,k <unbox o: OAQw
YEFW;k:BAQw X;--Fv:AD BaQw

YEW;k<letd wax=oin N:<OAQw
S HEAW {(C;b); ws}; k: AQw

S Q:TF(: Aaw 2P

Wik <vo: AQw

S EA{W (C::k;b); ws b return - w': AQw

Figure 4. Extended expression and continuation typing rules

(1) Ww:[k,MN] — W;w:[k<o N;M]

(2) Wiw:[k<o N;v] —W;w:[k<vo,N]

(3) Wyw:[k<(A\z.M)o,v] — W;w : [k, [v/z]M]

(4) W;w: [k, here M] — W;w : [k < here o, M]

(5) W;w : [k,unbox M] — W;w : [k < unbox o, M|

(6) {w: {(C:k,b);wsh;W :[return w,v]
{w: (C,b);ws ;W : [k, v]

(7) {w:{C,b);ws};w: [k, fetch [w'|M] —
{w: (C:k,b);we ;W : [return w, M]

(8) {w:{(C,b);ws}t;w: [k,get (W)M] —
{w: (C::k,b); we ;W : [return w, M]

(9) {w:{C,b);ws};w: [k <there o, v] —
{w:(C;b,l =v);we};w: [k,w.l] (£ fresh)

(10) W;w : [k < unbox o,box w.M] —
W w : [k, [w/w]M]

(11) {w: (C,b); ws}; W : [k, £] —
{w: {(C,b);ws};w: [k, v] (b(6) = v)

(12) Wy w : [k,letd w.x=Min N] —
W;w: [k<letd wax=oin N, M]

(13) Wyw : [k<letd w.x=oin N,w./ —

Wiw [k, [¢/a][W/w]N]

Figure 6. Dynamic Semantics

states that any well-formed network state is eitieeminal

(meaning it has successfully finished computation) or can

their domains, and for each world the table types > (w;)
andr’ = ¥'(w;) agree on the domain of

Theorem 5 (Progress)

If D:YFN

then eitheNisterminal or IN.N— N.
Theorem 6 (Preservation)

If D:YFNand€ :N— N

then I¥,FX' DY and F:Y FN.

Proof of progress is by induction on the derivatitbn
Proof of preservation is by induction on the derivati®n
with inversions orD.

Therefore, a well typed program can make a step (or is
done), and steps to another well-typed program. By iterat-
ing these two theorems it is easy to see that a well-typed
program can never become stuek.

4.4 Comparison

To justify our decomposition, we compare the proof
terms from section 4.1 to a hypothetical system “H5” where
the rules act non-locally (closely modeled after Simpson’s
systemNgo [15]). It shares features with calculi discussed
in section 6.

H5 has noget or fetch ; instead it replacebere ,
unbox , andletd with three new terms:

e there (w)M, which computesV/ of type A atw and
then returns its address of typed;

e unboxfrom [w]M, which computes\/ (of type 0 A) at
w, and then returns its value of typg

eletdfrom (w) w’'.y = Min N,whichislikeletd ex-
ceptthatit computed/ (of type< A) atw instead of locally.

make a step to a new network state. Preservation states that SHowever, as stated our type safety theorem does not guarthatethe

any step we make from a well-formed network results in a type of the final value sent tinish

state that is also well-formed. A network is terminal if it is
of the formW; w : [finish | v]. We say that store types are
related a2 O X' if they have the same world constants in

does not change through the course
of execution. To prove this we can index the network welkfedness
judgment with the “final answer” type and modify the contitioa typing
rule forfinish without any change in the preservation proof, observing
that none of the transitions modify this type.

In H5, the proof term of0A D> O0AQw would be: simple: since there is no value of typer we can initiate a
, remote procedure call which is known never to return. For
(H5) Az. letdfrom ”<W> Wy =z V, the value analyzed is not generally portable to our world.
in box w".unboxfrom [w] y We conjecture that a remote procedure call mechanism can
distinguish cases remotely and send back only a label and a
bit indicating whether the left of right case applies.

Other future work includes incorporating recursion and
other type constructs for functional programming. We also
need to consider lower-level details of an implementation
such as distributed garbage collection, failure reco\aT,
certification of mobile code.

Note that this term is not moving the code at all! Instead,
it creates a new box that, when opened, will unbox the code
from the original world into the target world. This hardly
fits our model of mobile code. Moreover, tieeliminiation
letdfrom allows its source to be an arbitrary world, so we
may end up calling ourselves remotely. An implementation
could optimize local RPC, but it is better to enable purely
local reasoning in the semantics itself.

The H5 proof term of>GA O G AQw is: 6 Related Work

Ar.letdfrom (W) W'z =7
(H5) in letdfrom WHYwy==x
!

(
in there (w")y

o Others have also used modal logic for distributed com-
puting. For example, Borghuis and Feijs’s Modal Type Sys-
tem for Networks [1] provides a logic and operational se-
In addition to the self-RPC seen in the last term, the H5 mantic$ for network tasks with stationary services and mo-
program is forced to deconstruct both diamonds and reintro-bile data. They usel, annotated with a location, to repre-
duce a direct address. This has the effect of publisdifly ~ Sent services. For example?(A > B) means a function
the table atv”, where it already must have been published! from A to B at the locatioro. With no way of internalizing
mobility as a proposition, the calculus limits mobile daia t
5 Future Work base types. Seryices are sim_ilarly restricted to de_pthaone
row types. By usingd for mobile code and> for stationary
resources, we believe our resulting calculus is both simple

With the minimal set of connectives presented here, OUr 2 nd more general.

system has the same theorems as Simpson's IS5. This is Cardelli and Gordon [4] were perhaps the first to devise

because the accessibility relation in S5 is that of equiva- . . .

lence classes. Althouah there mav be more than one e uiv-a modal logic for reasoning about programs spatially, later
j gh there may AUV~ efined by Caires and Cardelli [2, 3]. They do not take a

alence class of worlds, disjoint classes cannot affect each

. .~ propositions-as-types view of their logic; instead, thieyts
other. Now, Lambda 5 only supports reasoning about a sm-p P yp . 9u 2y
] . . . from a process calculus, mobile ambients, and develop a
gle class; the list of worlds ife. Each IS5 theorem is proved . ; ' . :
. classical logic for reasoning about their behaviors. There
at some world, and so we can focus our attention on that

world's class and repeat the proof in Lambda 5. discardin fore, their modal logic is very different from intuitionist
. P P ' 955 and includes connectives for stating temporal propertie
any assumptions from other classes.

The addition of some other standard connectives Aike security properties, and properties of parallel comy
) . . .~ In contrast, Lambda 5 may be seen as a pure study of mo-
and T poses no problem. When introducing disjunctive

. . bility and locality in a fully interconnected network.
connectives likel andV, however, we must be careful. For - .
. .) o : Hennessy et al. [5] develop a distributed version of the
instance, in Simpson’s IS5, the elimination rule fois

m-calculus and impose a complex static type system in or-
1 Quw der to constrain and describe behavior. Similarly, Schmitt
CQuw’ LE and Stefani [13] develop a distributed, higher-order warsi

of the Join Calculus with a complex behavioral type sys-
o . :) tem. In comparison, our system is much simpler, elimi-
t|_on IS true_ "%‘?”V other world irespective of their mutual nating the complexities of concurrency, access contral, an
(injaccessibility. Now our argument above does not hold, o|ateq considerations. By basing our system on the Curry-

because disjoint equivalence classes may a_lffect each othe; /- correspondence, we have a purely logical analysis
Irll t_he %resesnce Oj or vt‘)’\(’je ml;]St marI](e the sllgr?tly weaker q and, furthermore, we expect straightforward integratida i
claim that IS5 and Lambda 5 have the same theorems undey, ,;_gcae functional language for realistic programs.

assumptions about a single class only. This includes all the
orems of the fornw; - AQw because all worlds introduced
in the proof of AQw will be interaccessible with.

Becausel andV reason non-locally, we require special
considerations in the operational semantics. Falsehood is ®by way of compilation into shell scripts!

In words, if L is true at some world then any proposi-

Moody [8] gives a system based on the constructive
modal logic S4 due to Pfenning and Davies [11]. This lan-
guage is based on judgmentdrue (here),A poss (some-

where), andA valid (everywhere) rather than truth at par- [2]
ticular worlds. The operational semantics of his system
takes the form of a process calculus with nondeterminism,
concurrency and synchronization; a significantly différen
approach from our sequential abstract machine. From the [3]
standpoint of a multiple world semantics, the accessybilit
relation of S4 satisfies only reflexivity and transitivitytn
symmetry. From the computational point of view, acces-
sibility describes process interdependence rather than co
nections between actual network locations. Programs are
therefore somewhat higher-level and expnastential mo-
bility instead of explicitly code motion as in thietchand
getconstructs. In particular, due to the lack of symmetry it
is not possible to go back to a source world after a poten- [5]
tially remote procedure call except by returning a value.

Jia and Walker [6] give a judgmental account of an S5-
like system based on hybrid logics, but do not compare it
to known logics. Hybrid logics internalize worlds inside
propositions by including propositionthat a value of type
A resides a worldv, “Aatw.” This leads to a technically
different logic and language though they have similar goals
Their rules forO and < are similar to the non-local H5
system that we compare Lambda 5 to in section 4.4. Like
Moody, they give their network semantics as a process cal-
culus with passive synchronization across processes as a
primitive notion. In comparison, we are able to achieve 9]
active returns of values by restricting our non-local com-
putation to two terms, and associating remote labels with[]
entries in a table rather than with processes. We feel that
this is a more realistic and efficient semantics.

(4]

(6]

(7]

[11]
7 Conclusion

We have presented a logic and foundational program-
ming language Lambda 5 for distributed computation based
on a Curry-Howard isomorphism for the intuitionistic [12]
modal logic S5, viewed from a multiple-world perspective.
Computationally, values of typelA are mobile code and
values of type®> A are addresses of remote values, providing
a type-theoretic analysis of mobility and locality in areint
connected network. We have shown that Lambda 5 remain
faithful to the logic, via translations from natural dedoat
to and from a sequent calculus in which cut is admissible.
Moreover, by localizing introduction and elimination rsle
for mobile and remote codé&l{, <1, and<$ E) and adding [14]
explicit rules for code motion, we achieve an efficient and
natural computational interpretation.

J13]

References

[1] Tijn Borghuis and Loe M. G. Feijs. A constructive logicrfo [15]
services and information flow in computer networkshe

Computer Journal43(4):274-289, 2000.

10

Luis Caires and Luca Cardelli. A spatial logic for concu
rency (part I). InTheoretical Aspects of Computer Software
(TACS) pages 1-37. Springer-Verlag LNCS 2215, October
2001.

Luis Caires and Luca Cardelli. A spatial logic for concu
rency (part I1). InProceedings of the 13th International Con-
ference on Concurrency Theory (CONCUPgges 209-225,
Brno, Czech Republic, August 2002. Springer-Verlag LNCS
2421.

Luca Cardelli and Andrew D. Gordon. Anytime, anywhere.
modal logics for mobile ambients. IRroceedings of the
27th Symposium on Principles of Programming Languages
(POPL), pages 365—-377. ACM Press, 2000.

Matthew Hennessy, Julian Rathke, and Nobuko Yoshida.
SafeDPi: A language for controlling mobile code. Report
02/2003, Department of Computer Science, University of
Sussex, October 2003.

Limin Jia and David Walker. Modal proofs as distributed
programs. Technical Report TR-671-03, Princeton Univer-
sity, August 2003.

Per Martin-Lof. On the meanings of the logical consgant

and the justifications of the logical law&ordic Journal of
Philosophical Logi¢1(1):11-60, 1996.

8] Jonathan Moody. Modal logic as a basis for distributecheo

putation. Technical Report CMU-CS-03-194, Carnegie Mel-
lon University, Oct 2003.

Tom Murphy, VII. Technical analysis of Lambda 5. Techni-
cal report. http://www.cs.cmu.edu/"concert/. Forthaogni

Frank Pfenning. Structural cut elimination: I. infoiistic
and classical logic.Information and Computatignl57(1-
2):84-141, 2000.

Frank Pfenning and Rowan Davies. A judgmental recon-
struction of modal logic.Mathematical Structures in Com-
puter Sciencel1:511-540, 2001. Notes to an invited talk
at theWorkshop on Intuitionistic Modal Logics and Applica-
tions (IMLA'99), Trento, Italy, July 1999.

Frank Pfenning and Carsten Schiirmann. System déiscrip
Twelf — a meta-logical framework for deductive systems. In
Harald Ganzinger, editoRroceedings of the 16th Interna-
tional Conference on Automated Deductipages 202—-206,
Trento, Italy, July 1999. Springer-Verlag. LNAI 1632.

Alan Schmitt and Jean-Bernard Stefani. The M-calculus
A higher-order distributed process calculus. Gonference
Record of the 30th Symposium on Principles of program-
mming Languagespages 50-61, New Orleans, Louisiana,
January 2003. ACM Press.

Carsten Schirmann and Frank Pfenning. A coveragekehec
ing algorithm for LF. In D. Basin and B. Wolff, editorBro-
ceedings of the 16th International Conference on Theorem
Proving in Higher Order Logics (TPHOLs 20Q3)ages 120—
135, Rome, ltaly, September 2003. Springer-Verlag LNCS
2758.

Alex Simpson. The Proof Theory and Semantics of Intu-
itionistic Modal Logic PhD thesis, University of Edinburgh,
1994.

