
ML Grid Programming with ConCert ∗

Tom Murphy VII
Carnegie Mellon

tom7@cs.cmu.edu

Abstract
Grid computing has become increasingly popular with the growth
of the Internet, especially in large-scale scientific computation.
Computational Grids are characterized by their scale, their hetero-
geneity, and their unreliability, making the creation of Grid soft-
ware quite a challenge. Security concerns make the deployment of
Grid infrastructure similarly daunting.

We argue that functional programming techniques, both well-
known and new, make an excellent practical foundation for Grid
computing. We present a prototype Grid framework calledCon-
Cert built entirely in Standard ML which allows for the trustless
dissemination of Grid programs through the use of certified code.
The framework is fault-tolerant and relatively easy to implement,
owing to a simplified network abstraction. This network abstrac-
tion is tedious to program for directly, so we present a high level
ML-like languageGrid/ML and a compilerHemlockfor the lan-
guage.

Categories and Subject DescriptorsD.3.2 [Programming Lan-
guages]: Language Classifications—Concurrent, distributed, and
parallel languages; D.1.1 [Software]: Programming Techniques—
Applicative (Functional) Programming

General Terms Languages, Reliability, Security

Keywords Grid Computing, Certified Code, Distributed Comput-
ing, Functional Programming, Compilers

Introduction
A Computational Grid is a large scale aggregation of computers,
often designed for scientific computing. There are many active
and as-yet-unrealized visions of the Grid. We take the view that
analogizes with the electrical power grid: a vast connection of
computational resources, accessible to all participants. We hope
that such a network can be built in a peer-to-peer fashion from
computers owned by volunteer internet users.

In spite of its tantalizing potential, the Grid remains difficult
to deploy, and difficult to program for. Some special challenges
encumber it:

∗ The ConCert Project is supported by the National Science Foundation un-
der grant ITR/SY+SI 0121633: “Language Technology for Trustless Soft-
ware Dissemination”.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ML’06 September 16, 2006, Portland, Oregon, USA.
Copyright c© 2006 ACM 1-59593-483-9/06/0009. . . $5.00.

Security. Grid programs are by nature network applications,
which makes them especially susceptible to remote attacks. In or-
der to convince users to donate their unused cycles, they must do so
at negligible risk. Donors should be protected from both malicious
Grid programmers and imperfect ones.

Failure. Because the Grid consists of home computers with in-
termittent usage patterns and network connections, we must expect
that nodes may fail at any time. Failure is a problem for program-
mers, who must write their programs to expect, and tolerate, failure.

Distribution. The distributedness of Grid applications is often the
very point, but it comes with its costs, too. For instance, distributed
concurrent programs are difficult to schedule efficiently.

There are two main contributions of this paper. We present a
model for Grid computing calledConCertthat draws on ideas and
techniques from functional programming to provide partial solu-
tions to the above difficulties. We also describe the implementa-
tion of this model. It consists of a peer-to-peer application that
implements the ConCert network, called theConductor; a high-
level language for Grid programming calledGrid/ML; and its com-
piler Hemlock.

For security we use type safe languages and certified (or proof-
carrying) code. Though these ideas are not new, the ConCert project
is one of few extant applications that consume certified code tech-
nology. Therefore we provide valuable lessons about usage scenar-
ios and requirements for such technology. In order to deal with the
particular contours of fault-tolerant distributed programming, we
design our network substrate with failure recovery and a simple,
local scheduling policy in mind. We do so by embracing the pure
functional paradigm: Grid applications are split into series of deter-
ministic functions whose results are memoized by the network.

While this design greatly simplifies the design and implemen-
tation of the framework software, it also introduces new problems.
Programming directly against this network abstraction is very te-
dious; programmers usually need to apply program transformations
by hand in order to achieve standard concurrent programming id-
ioms such as thread synchronization. Through the traditional com-
pilation techniques of closure- and CPS-conversion we are able to
automate this and present a high level language that makes Grid
programming quite pleasant. Grid/ML is based on core SML. In
Grid/ML we are able to express a few standard techniques for fault-
tolerance, including message logging and checkpointing.

The remainder of this paper is organized as follows. First, we
present our network abstraction, motivating it with the implemen-
tation of our Conductor software (Section 1). Next, we present the
Grid/ML language with a few small examples (Section 2). We then
describe the Hemlock compiler (Section 3) and the special chal-
lenges we face compiling Grid/ML for the ConCert network, fol-
lowed by further examples of Grid/ML programming (Section 4).
Each is the subject of ongoing research, so we conclude with an
in-depth discussion of our next steps (Section 6).

1. The ConCert Network
A Grid generally consists of a number of distributed, concurrently
running processes. In typical Grids the processes communicate
with one another via some API—maybe nothing more than internet
sockets. Though successful in scientific computing, Grid APIs such
as Globus [14] usually take the dissatisfying perspective that Grid
applications are literally programs running on separate computers
that communicate over the internet. That is, there is little abstrac-
tion. One ultimate goal of the ConCert project is to take a more
high-level language-based view in order to answer the question:
What is it like to program the Grid as a new kind of computer?

Figure 1. Grid processes engaged in a protocol

Although this perspective can be seen as essentially aesthetic,
there is a more serious issue involved with the low-level view due
to the fact that Grid processes can fail. Suppose processesA andB
are exchanging data via some protocol, as illustrated in Figure 1.
Now suppose processB fails after the step markeds3. This leaves
A in a problematic state: it is part-way through a protocol, with
nobody to talk to. In a sense the imperative nature of failure has
exposed the imperative implementation of communication. A typ-
ical solution to this problem makes the communication functional
via memoization. If we store all the messages sent to and fromB,
then we can restartB from the beginning, and replay messagesm0

andm1 to it. (For this to work, we assume or check thatB sends
back the same messagesm′

0 and m′
1 in response, implying that

B is deterministic given particular inputs.) IfB is communicating
with several processes, we need to replay all the messages sent by
all of those processes, in the correct order. This technique is called
message logging [18].

Our basic strategy in designing the ConCert network is to build
message logging into the Grid by representing these processes as
deterministic functions whose results are memoized. As we do, our
network will not obviously be as expressive as a network of pro-
grams communicating via internet sockets. However, through some
idioms and compilation techniques we will be able to regain some
of this expressiveness. Section 6 briefly discusses our current ef-
forts to regain other expressiveness, such as awareness of location.

1.1 Cords

ConCert is a peer-to-peer network of interconnectednodes, each
running the sameConductorsoftware. This software has several
duties discussed in a previous report [7]; two are relevant here. The
first duty is to maintain a queue of pending work. The second is
to “steal” work from other nodes (or perhaps the node itself if its
queue is not empty), verify and run the work, and memoize the
result. By analogy withthreadand musical pun onchord, we call
these units of workcords.

Cords are bits of deterministic, certified code. Because we
are agnostic about the kind of data that may be manipulated
by these cords, each can be thought of as a function of type

byte vector → byte vector. In other words, cords are re-
sponsible for marshalling their own data structures into bytes suit-
able for transmission over the network.

Cords cannot communicate directly with other cords. Therefore,
not only are cords deterministic, but they do not block waiting for
any network events. This simplifies scheduling greatly. However,
a cord can havedependencieson the results of other cords. Such
a cord cannot be run until all of its dependencies are filled, at
which time it will be given the results of all the cords it depends
on as a second argument, itswitness. Thus we can refine the type
of cords tocord vector × ((witness × byte vector) →
byte vector). Here thecord vector is the set of dependencies.
The typewitness is a vector of byte vectors; the results of the
cords it depends on. An apt analogy is that cords are like a com-
piler’s basic blocks, except that they are split by communication
structure, rather than by control flow structure.

The essential feature that allows us to do anything interesting
with cords is that they can spawn other cords. The cord code also
receives a spawning function as one of its arguments, along with
abstract types and constructors for forming dependency vectors
(etc.). In the actual implementation these are accompanied by some
other uninteresting arguments.1 For most of the discussion here we
ignore these extra arguments.

In practice, a cord can only re-spawn its own code with a
new argument and dependencies, since it would otherwise have to
conjure up certified code from some place (we do not support “run
time code generation” for lack of compelling applications). This is
no problem, however, as we can use the cord’s argument to give a
single cord unlimited potential “entry points.” ConCert caches the
components of cords, so once a host has received and certified a
cord, it does not need to download or certify future cords spawned
by that one.

Conceptually we can think of each cord as literally, recursively,
containing all of the cords that it depends on, according to the
type given above. However, this is highly inefficient in practice. We
instead uniquely identify each cord using cryptographic hashes; in
ConCert a cord identifier is a triplet(hash(deps), hash(arg),
hash(code)). We use the SHA-1 algorithm [4] to hash cords,
which produces a 160 bit hash. The chances of hash collisions
by chance are therefore negligible. The best publicly known attack
against SHA-1 takes263 operations [30], which is perhaps feasible
for a malicious party with significant resources. However, we do
not yet protect against other, cheaper forms of malice (Section 6).
Hash collisions only disrupt the network algorithms, and do not
affect the safety of the certified code that is run.

When spawning a new cord, the spawning cord receives the
spawned cord’s id. Because cords are deterministic given their
arguments, this identifier also uniquely determines theresultof the
cord, presuming that the cord terminates.

Scheduling higher-order cords with dependencies requires
network-wide lookup of dependencies and retrieval of results. We
achieve this by the implementation of a network-wide distributed
hash table [27]. We also use this hash table for redundancy in order
to implement failure recovery.

Failure recovery happens as follows. When a cordc1 in some
node’s queue depends on another cordc2, which the node decides
has failed to complete, the node will attempt to restartc2. Often,
its code, argument, and dependencies can be recovered (by lookup
in the hash table). If not,c1 fails as well and is removed from
the queue. In a catastrophic situation, failure may propagate to the
parent of all cords, which is theclient (described below). If this
client is still running, then it will have retained the materials to

1 Access to these resources could also be achieved by dynamic linking; we
choose entirely closed code for its relative simplicity.

restart any cords it is waiting for. If it is not, then there will be no
way for anyone to observe the result (the application has essentially
terminated), so there is no reason to try to restart any involved
cords.

Cords can’t produce effects, so the final piece of our network
is the concept of aclient, which is a program that connects to the
Grid to run work on it. A client interfaces with a local conductor
by seeding it with cords (probably as the result of some user input),
and retrieving the results of cords that it submitted. The client is
not restricted as cords are; it may be nondeterministic, effectful,
and may block waiting for a cord’s result. On the other hand, it is
not mobile or certified (necessarily), and it is clearly not tolerant to
(its own) failure. In the Grid/ML language, the client and cord code
are written as part of the same source file, but the programmer must
be aware of the distinction.

1.2 Implementation

The ConCert conductor is written in Standard ML and runs only on
x86 Linux. For our certification framework we use TALx86 [21],
a particular implementation of typed assembly language for x86
processors. In principle we support multiple certification frame-
works and tunable safety policies, though only a TALx86 checker
and loader exists currently. A brief description of this part of the
Conductor may be interesting to those developing code certifica-
tion frameworks; in order to write an LVR (“loader, verifier, and
runner”) we need to be able to:

• Test if code (read from a file) passes certification

• Dynamically load (from a file) and execute closed code with ar-
guments. One of these arguments will be a function for spawn-
ing new cords, which needs to communicate with the Conductor
over a UNIX socket

• Retrieve the code’s result and send it over a UNIX socket

Certification in the first item can be parameterized by a safety
policy. For our current implementation, the only possible safety
policy is type safety. In certification systems under development,
this can include properties like resource bounds [29].

It is good if the second item does not depend on the first. The
reason is that we usually run the same piece of cord code several
times on different arguments in the course of execution. We wish
to be able to cache the result of certification to avoid paying the
(often substantial) cost multiple times. Unfortunately the TALx86
dynamic loader [12], which itself is written safely in TALx86, has
no choice but to type check on each dynamic load.

The LVR is simple and can be written at a fairly low level. Our
TALx86 loader is written in Popcorn (with a tiny amount of C for
Unix sockets), which is a safe C-like language that compiles to
TAL. The experimental LVR for TALT, the project’s next genera-
tion foundational typed assembly language [11], is simply written
in C and assembly.

1.3 ConCert Applications

Before developing our high-level language Grid/ML, we wrote
several applications directly against the ConCert abstraction. For
these we wrote our cord code in Popcorn, with clients written in
Standard ML or Popcorn.

Ray tracer. We developed a Grid ray tracer based on the specifi-
cation from the 3rd ICFP programming contest [3]. Ray tracing is
a naturally parallelizable task; arbitrarily small chunks of the im-
age can be rendered on different machines to get an almost linear
speedup. We can spawn all of our cords from the client (never re-
cursively), and don’t need dependencies. Despite this application’s
simplicity, it is actually most similar to current large-scale Grid

applications such as SETI@Home [2], which often have massive
amounts of data that can be processed independently.

Chess Engine. Next, we developed a Grid chess player based on
the Jamboree algorithm [19]. Naı̈ve game tree search is also easily
parallelizable, however, in order to avoid an unmanageable blow-
up, serial pruning strategies such as Alpha-Beta are necessary. Jam-
boree attempts to balance between these two extremes. Unlike the
raytracer, this algorithm requires parallelism at depth greater than
1, so we manually apply CPS and closure conversion to implement
fork-join parallelism with cords.

2. The Grid/ML Language
Despite our demo applications, Popcorn and TAL Grid code is
much too difficult to develop and maintain. Our answer is a high
level functional language called Grid/ML based on core SML.

The extensions for Grid programming are actually quite simple.
We add the types and primitives from Figure 2.

type α task
val spawn : (unit → α) → α task
val syncall : α task vector → α vector

fun sync t = sub(syncall [| t |], 0)

Figure 2. Grid/ML Grid Primitives

In other words, Grid/ML has simple fork-join parallelism,
where the abstract typeα task represents a forked task that will
return a result of typeα. Thespawn primitive takes a suspension
and begins running it on the Grid. Thesyncall primitive waits
for all of the supplied tasks to finish and then returns each of their
answers. We definesync, which will be used in some examples,
as asyncall on a singleton vector. Tasks will be compiled into
cords. Because we allow tasks at any type, the language imple-
mentation will have to marshal values of arbitrary type intobyte
vectors. In addition we will have to deal with the blocking aspect
of syncall especially, since cords are not allowed to block.

The story is slightly more complicated. Thetask primitives are
for writing Grid code (which will become cords), but recall that
we also write the client code in the same source file. (We do this
because it is almost always necessary to share data structures be-
tween the client and Grid code, and Grid/ML does not support any
sort of separate compilation or libraries.) Therefore we also have a
type α job and associated operationssubmit andwaitall. For
client code it is easy to provide other primitives on jobs, such as a
non-blocking query as to the status of a submitted cord. Aside from
marshalling, these correspond to direct calls to the same ConCert
client library used to write our Popcorn demos.

let
fun job () =

let val t = spawn (fn () => "hello")
in sync t
end

val j = submit job
in

print (wait j)
end

Figure 3. Simple Grid/ML Example

A simple example in Figure 3 illustrates the use of these prim-
itives. In this example, the body of the functionjob runs on the
Grid, and the rest is client code. The Grid code spawns its own task
and immediately syncs on the result. Note that client code and Grid

code have separate and unequal capabilities: Only the client code
can perform I/O, and only the Grid code cansyncall. Violations
of this are currently checked dynamically. (Our work on modal type
systems, described in Section 6, is intended to make this distinction
static, among other things.)

Because they will be compiled into cords, anyspawn in a
Grid/ML program can be thought of as a checkpoint—a common
fault-tolerance technique. If a task fails while running on the Grid,
then it can be restarted from a checkpoint (usually the most recent
one, depending on the extent of the failure). It will only be restarted
if some other task is currentlysyncing on it. The Grid/ML pro-
grammer can easily induce the creation of extra tasks in order to
checkpoint long computations.

datatype α cxpoint =
Done of α

| More of cxpoint2 task

fun iter(n, r) =
if n = 1000000
then Done r
else let fun rest () = iter(n + 1, f r)

in
if n mod 50000 = 0
then More(spawn rest)
else rest ()

end

fun getanswer cp =
case cp of

Done a => a
| More t => getanswer (sync t)

Figure 4. Encoding Checkpoints in Grid/ML

Figure 4 contains an example that uses checkpoints. The func-
tion loop is intended to compute the iteration off on r a million
times. In order to avoid losing intermediate results should the com-
putation fail, the result datatypeα cxpoint allows the return of in-
termediate progress (More) in addition to the final answer (Done).
Now the caller,getanswer, syncs on any checkpoints that it re-
ceives, and succeeds when the final answer is reached. Eachsync
may cause the associated checkpoint to restart if it detects failure
or a timeout.

Though explicative, this example is actually overkill. Due to our
compilation strategy,syncs themselves also act as checkpoints. We
can write a function that checkpoints the currently executing task
and then continues; its code is simply:

fun checkpoint () = syncall [| |]

That is,syncall of the empty vector of tasks induces a check-
point. The reason for this will be clear when we explain the im-
plementation ofsyncall in the next section. We will then be able
to give other interesting examples of functional programming with
cords.

3. The Hemlock Compiler
Hemlock is our compiler for Grid/ML. It transforms a Grid/ML
program into a TALx86 client and cords. Hemlock is also written
in Standard ML. It is named after the nonpoisonous state tree of
Pennsylvania—not Socrates’ fatal cocktail!

2 We deviate from SML syntax here:datatypes are forced to be uni-
form, so we do not even mentionα when we make recursive reference to
cxpoint. Datatypes are compiled asµ-sums.

Hemlock is much like a standard (whole-program) compiler for
a typed functional language. It has three special requirements. First,
it must generate well-typed TALx86 code, so the compiler must
be certifying. Second, it must be continuation-based in order to
enable the compilation ofsyncall. Finally, we must be able to
marshal any value at runtime into byte vectors. To expedite the
implementation of marshalling, we use a unityped representation
(this also makes certification somewhat simpler).

We will generate a single piece of cord code for our Grid/ML
application. Recall that cords take arguments; the argument to this
code will be a (marshalled) closure to run. In this way the single
piece of code can actually represent any number of operations. The
standard portions of the compiler are described briefly, and at the
appropriate stages we explain any special considerations relating to
these three aspects.

Rather than use a parser generator tool, Hemlock’s parser is
written using combinators [17]. This allows us to handleinfix
declarations by making parsing context-sensitive. We support the
entire grammar of core SML (except where we intentionally di-
verge) in about 400 lines of code.

Parsing is followed by fairly standard elaboration into a typed
intermediate language. Type-checking and translating the Grid/ML
primitives at this stage is trivial; they are primitive in the inter-
mediate language and have analogous types there. Datatypes are
translated as polymorphic mutually-recursive sums. At this point
we translate into a unityped CPS language, which introduces our
first point of interest.

3.1 Continuation Passing Transformation

Figure 5. Transform ofsync, first attempt

Our CPS language is closely based on Appel’s [5]. As we trans-
late, we have the ability to grab the current expression’s continu-
ation and reify it as a function, which we will use to translate our
Grid primitives. Otherwise this translation does not differ substan-
tially from the standard.

We explain the translation of the Grid primitives at a high level,
because the details are quite confounding. As remarked earlier,
syncall is the source of complication. We look at the unary case
of sync for simplicity (of course then-arysyncall case can easily
be coded up by iteratingsync, although this is less efficient.) Each
task will be split into two cords every time that it does async; a
first cut appears in Figure 5. When translating a task into a cord and
encounteringsync on a taskt, we terminate the current cord after
spawning its continuation. The continuation has adependencyon
the the argument tosync. In this way we avoid actually blocking
within a cord, but nonetheless implement the blocking semantics of
sync. Recall that each cord is invoked with the results of each of
its dependencies; fora1 that isd0, the result oft0.

Alas, this näıve translation doesn’t work. The reason is that the
taskt may itself do async, and presumably some other task or
client is expecting to receive the result of taska. However, we can
no longer look to the (first) translated cord to find the answer to a
task, because the task may be split across many cords due tosyncs.
Note that we even ignored the return value ofa0 in Figure 5!

cord a0 =
...
ca1 = spawn (cord=a1, deps=t0)
finish (FWD ca1)

cord a1(d0) =
(case d0 of

ANS x =>
f x
...
finish (ANS y)

| FWD t1 =>
ct1 = spawn(cord=a1, deps=t1)
finish (FWD ct1))

Figure 6. Revised code fora0, a1

A revised version appears in Figure 6. Now, all cords return
a sum: EitherANS with the final answer for the associated task,
or FWD with the next cord in the sequence. (This sum type is still
marshalled into abyte vector as before.) Asa0 terminates, it
forwards to its continuation, so that any cord depending ona0

will be able to direct its attention toa0’s continuation instead. We
see exactly this behavior ina1, which has a dependency on the
result of t0. The corda1 must must check if it has received the
final answer (in which case it continues as before) or a forwarding
message. If it is a forwarding message, it respawns itself with a
dependency on this new cord, and returns its own corresponding
forward message. At the normal end of a task, we wrap the result
with ANS.3 To translatespawn, we simply spawn the supplied
function after wrapping it so that its resultx becomesfinish
(ANS x). Cords spawned through the Grid/ML mechanism have
no dependencies.

This aspect of the translation is very similar to theα cxpoint
device that we used in Section 2. In fact, now we can see why
syncall [| |] implements a checkpoint. An emptysyncall
causes a new cord to be spawned with no dependencies, so it
executes immediately. The previous cord terminates with aFWD to
the new cord. To resolve theFWD, any task waiting on this one does
essentially the same case analysis and loop that was done in the
getanswer function from Figure 4.

At this point in the compiler we introduce the concept of mar-
shalling, so we have primitives that convert from any type to byte
vectors, and vice versa. During CPS conversion, calls tomarshal
are inserted when a value is returned from a cord, and calls to
unmarshal are made on every value received as the result of a
dependency. Also recall that we really generate a cord with one
entry point whose argument is a function to call; at this entry
point we unmarshal the argument function and invoke it. When we
want to spawn a function, we really spawn our own code with the
marshalled function as an argument. The implementation of mar-
shalling will be discussed in Section 3.3; hopefully its uses are
clear.

3 For performance reasons, the Conductor supports forwarding cords di-
rectly, which is what the compiler actually generates. These special cords
have little overhead and can be run immediately to update the continuation
with the new dependency.

The CPS conversion is followed by an optimization pass. Func-
tion inlining,β- andη-reduction are particularly important because
of the somewhat naı̈ve generation of continuation join points in the
translation. Otherwise, this optimization pass is fairly standard.

3.2 Backend

In order to reify higher order functions as data, we run a standard
closure conversion algorithm to make function values into a pair
of closed code and an environment. Environments are no more
difficult to marshal than records, but code pointers will need some
special attention. Although closure conversion is unsurprising to
the implementer of functional languages, it is sorely missing from
some related languages (Section 5), which force the programmer to
perform it manually.

Following closure conversion, we essentially have assembly
language, and are ready for translation into TALx86. We choose
the following TAL typettt to uniformly represent all values:

ttt = ^+[*[S(INT_T), B4],
*[S(STR_T), string],
*[S(REF_T), ‘ttt],
*[S(SUM_T), B4, ‘ttt],
*[S(IND_T), B4],
*[S(TUP_T), (array ‘ttt)],
*[S(COD_T), codeptr]]

Here, ttt is a pointer (̂) to a disjoint union (+) of several
possibilities. Each is a product (*) with some singleton type (S())
as its first field; the tags*_T are each distinct integer constants
(this is just the tag field normally used in uniform representations).
INT and STR are straightforward integers and strings (B4 is the
type of four-byte machine words).REF is a reference cell; note
that types are automatically recursive in TAL.SUM consists of an
object language tag (indicating the arm of the sum) and then a
value. Since all types are represented the same way, there is no need
for dependency here.TUP is followed by a variable-length array,
which is used for vectors and tuples.COD contains a code pointer;
we arrange that all code pointers inside values have the same type
by using a uniform calling convention. TheIND tag is only used
during unmarshalling, and will be explained shortly.

Given this representation, generation of type-safe TAL code is
not difficult (though the resulting code is allocation heavy and has
many tag checks). Performance is acceptable for a prototype, and
could be improved significantly with simple local unboxing opti-
mizations. The payoff of this representation comes in the imple-
mentation of marshalling and unmarshalling.

3.3 Marshalling

We wish to write functionsmarshal : ttt → byte vector and
unmarshal : byte vector → ttt option. These functions
must be well-typed TAL and must deal with all data, including
code pointers and cyclic references. We also wish to preserve shar-
ing. We give our marshalling algorithm along with a checklist of
necessary features for designers of certified code frameworks.

The format of a marshalled term is an array (encoded as a string)
of subterms represented as strings. Each subterm is a constructor
applied to some integers, which are the indices of other subterms
in the array. For example, the tuple(400, 500) has subterms400
and500 and can be represented as:

loop () =
if empty(waitq)
then done
else p = pop_head(waitq)

s = concat(tagof(p),
map getindex
(subterms of p))

push_tail(outq, s)
loop()

getindex p =
case (lookup p in tmap)
of SOME i => return i
| NONE =>

i = nextindex
increment nextindex
insert(tmap, p → i)
push_tail(waitq, p)
return i

marshal p =
clear queues
insert(tmap, p → 0)
push_tail(waitq, p)
loop ()
return string(rev(outq))

Figure 7. Pseudocode for Marshal

3.3.1 Marshal

Themarshal function crawls over a term of typettt and produces
an array as described, which it then encodes as a string.

Pseudocode for our marshalling function is given in Figure 7.
It makes use of several data structures. The queueoutq is a list of
processed subterms. It will be linearized to create the output array.

The maptmap is a map fromttt pointersp to integersi. Each
i is the position that the subterm atp will have in the final array,
if it is known. If p is in the domain oftmap, then it has already
been marshalled (and is inoutq) or is on thewaitq. We represent
the map as a binary tree; more efficient representations such as
hash tables are not possible because TALx86 only has inequality
operations (less than, greater than, and equal) on pointers.

The queuewaitq is a queue of pending pointersp. We insert
at the tail and dequeue from the head. They appear in the queue
in the exact order that they will appear in the output array. These
are terms that we’ve forward-referenced as members of some other
terms, but have not yet marshalled.

The integernextindex simply gives us the next available index
in the array. It is also the sum of the lengths ofoutq andwaitq.

To marshal a term, we clear our data structures and then ini-
tialize the wait queue and map by assigning the term position 0.
We repeatedly process items from thewaitq until it is empty. To
process one, we look at its tag and look up each of its subterms in

the map (if any). If they have already been assigned indices, then
we use those indices; otherwise we assign them the next available
indices and put them in the wait queue.

Because we cannot transmit code pointers, we also generate a
static arrayctab at compile time, which contains all of the code
pointers in our program. (Actually, we can optimize this table
somewhat by omitting code that can never be part of an escaping
closure.) To marshal a code pointer, we search through the table
for its index, and ship that integer. (This process does not appear in
the pseudocode above, but is completely straightforward.) Again,
we cannot use hashing here because we have only inequality on
pointers.

The marshalling code is about 1,000 lines of TALx86 code, a
mix of hand-written TAL and the output of the Popcorn compiler.

3.3.2 Unmarshal

firstpass (arr, s) =
foreach i in 0..(arr.len - 1)

tag = get_next(s)
case tag of

...
| COD =>

codidx = get_next(s)
arr[i] = new_ttt(COD, ctab[codidx])

| REF =>
subidx = get_next(s)
arr[i] = new_ttt(REF, arr[subidx])

...

flatten (arr) =
foreach i in 0..(arr.len - 1)

foreach subterm field f in arr[i]
if f.tag = IND
then f := arr[f.val]

unmarshal s =
n = num_elts(s)
arr = new_array(n)
foreach i in 0..(n-1)

arr[i] = new_ttt(IND_T, i)
firstpass(arr, s, idx)
flatten(arr)
return arr[0]

Figure 8. Pseudocode for Unmarshal

When we receive a strings, we need to unmarshal it into a term
of typettt. Recall that our marshalled string represents an array of
n subterms; the first thing we do is create an array ofttt pointers
with sizen, calledarr.

To handle cycles, we have a two-pass unmarshalling algorithm,
which is given in Figure 8. Here is where we use the indirect tag
IND_T that’s part of ourttt type. A pointer to attt with an
indirect to i means that the pointer should be to the contents of
arr[i] instead. We then “tie the knot” in a second pass, removing
all indirections. We begin by initializingarr[i] to an indirection
to i for eachi.

In our first pass, we simply read elements from the input string
s, and create terms to populatearr. Code pointers are small in-
tegers, which we look up in our code tablectab. If the element
indicates a term with subterms (such as a reference cell), then we
retrieve those subterms from the array. If we have not yet unmar-
shalled that element, we will use the indirection in the cell. Because
of cycles, there may be no way to order the elements such that we
avoid indirections.

Figure 9. Unmarshalling Example

Figure 9 shows the process of unmarshalling a self-referen-
tial tuple. Solid arrows indicate literal pointers, and dotted arrows
indicate indirections through the array. Part (a) shows the state
of affairs after writing the first term intoarr[0]. The ref term
created will contain whatever ends up inarr[1].

After filling in the remainder of the array slots, we have cre-
ated all of the terms, but all forward references are through indirect
pointers (Figure 9(b)). We then make a flattening pass to remove
these indirections. For each term in the array, we look at its sub-
terms. If any is anind(i), we rewrite it in place to point directly
to the contents ofarr(i). For instance, in Figure 9(c), we en-
counterref(ind(1)). We must rewrite this to the recursive struc-
tureref(tuple(ref ..., int(4))) without modifying the lo-
cation of theref, which is pointed to by other nodes.

After flattening, the first element ofarr holds the root of our
term, so we return that to complete unmarshalling.

The implementation of unmarshal is also approximately 1,000
lines of TAL code.

The marshalling algorithm preserves sharing, handles cycles,
and is simple enough to be coded directly in assembly language.
Marshalling could also be extended to perform hash consing, which
would reduce the size of marshalled data.

In order to implement marshalling this way, a certification
framework needs to minimally support inequality on code and
data pointers (coercions to integers for hashing enables better data
structures), and the imperative overwriting of fields inside objects
of sum type.

3.4 Other Features

Hemlock has a few other special considerations. As remarked ear-
lier, Grid/ML supports reference cells. However, these reference
cells cannot be used to communicate across cords; we do not wish
to violate our no-communication invariant. Each time we marshal,
we copy the heap, creating a new copy of each reference cell. Be-
cause of the compilation strategy we use, the identity of references
cannot be maintained acrossspawns andsyncs, either. However,
such “local” references can still be useful; for instance, they can be
used to safely implement benign effects such as memoization or the
balancing of a splay tree, and they can be used to generate cyclic
data structures that are then used functionally.

We also need to do two special things to implement exceptions.
First, exceptions that reach the end of a cord are propagated to any
cords that depend on it. This is accomplished by assigning a dis-
tinguished bit to marshalled data that indicates “exception”; when
unmarshalled, the value will be passed to the current exception han-
dler rather than become the argument or fill a dependency slot. This
is essentially just the monadic interpretation of exceptions where a
cord returning typeτ becomes a cord returning typeτ + exn.

Second, we implement the SMLexn type, which creates new
tags at runtime. In fact, we support a full extensible datatype mech-
anism, of whichexn is a special case. Typical implementations use
an incrementing counter to generate distinct integers for tags. We
can’t use a counter because we can’t coordinate the increment of
that counter across independent cords. Therefore, we use 64-bit
random numbers as tags. Think of these tags asnonces, in other
words, we are doing a form of cryptographic typechecking. Of

(* parallel tuple construction *)
fun &&(f1, f2) =

let val t1 = spawn f1
val t2 = spawn f2
val res = syncall [| t1, t2 |]

in
(sub (res, 0), sub (res, 1))

end
infix &&

(* ... its use *)
case P of

A /\ B =>
AndIntro
((fn () => prove (G ==> A)) &&
(fn () => prove (G ==> B)))

| ...

Figure 10. Parallelism in our theorem prover

datatype α stream =
Empty of unit

| Cons of α × stream task

fun consumer (ps : stream task) =
(* fetch the next proof from server *)
(case sync ps of

Cons(pf, next) =>
(* use the proof, then loop *)
... pf ...
consumer next

| Empty => ...)

fun server state =
let

(* generate a proof and next state *)
val (pf, nextstate) = ...

in
(* send the proof to any listener,

and begin computing the next *)
Cons(pf,

spawn (fn () => server nextstate))
end

Figure 11. Modeling one-way communication

course, we still want our cords to be deterministic, so the “random”
numbers are actually generated pseudo-randomly using the cord’s
own id as a seed. Collisions by chance are very unlikely–about 4
billion exception tags must be generated before we expect two to
be equal. Intentional collisions are easy to generate by writing TAL
code or the binary marshaled format directly. In either case, colli-
sions simply cause a run-time error, not a violation of safety.

4. More Examples
We have implemented a simple theorem prover for propositional
intuitionistic logic in Grid/ML as a test application. Theorem prov-
ing has many opportunities for parallelism, for instance, to prove
the propositionA∧B we independently proveA andB. The code
is quite simple; the only place that we use our Grid primitives is in
the implementation of parallel tuple construction&& (Figure 10).

In bottom-up theorem provers for Linear Logic [8] it is some-
times necessary to return not one proof but astreamof different
proofs (there may be multiple incomparable ways to use resources

to achieve a goal). We might like to model this as aproof serverthat
sends proofs to a waitingconsumer. This kind of communication is
also modelled easily in Grid/ML. In Figure 11 the server returns
a proof stream, which is aproof paired with a new server to
sync on for the next proof. The new server is started as the first
server concludes, so the client and server do execute in parallel.
More complex communication, such as multi-direction and multi-
participant communication can be modelled as well, with varying
degrees of faithfulness. No matter how the system is used, we retain
our automatic failure tolerance through what amounts to message
logging.

Our intention is that these examples are fairly unsurprising, be-
cause we argue that Grid/ML provides a natural and high-level ab-
straction that makes fault-tolerant functional programming simple
and transparent.

5. Related Work
The ConCert network can be seen as a generalization of Cilk-
NOW [6]. Cilk-NOW is an extension of the C language for writing
parallel programs, and a runtime system that permits their execu-
tion on networks of workstations. In the Cilk-NOW language, pro-
grammers write their code in manually CPS- and closure-converted
style. Like ConCert, Cilk-NOW only allows functional programs
with no extra-lingual communication. But because we automat-
ically perform the requisite program transformations and have
higher-order tasks and other functional language features, program-
ming in Grid/ML is much less constrained.

Chothia and Duggan [9] give a language based on the Pi Cal-
culus for fault tolerant distributed computing. The work is primar-
ily focused on the distributed maintenance of log tables, which are
used to achieve atomic transactions (another common technique
for fault tolerance). In particular, they use cryptography to pro-
tect against forged messages from attackers trying to disrupt these
logs. This goal is very ambitious; we do not even address malicious
claims about the result of a cord (the analog in ConCert). Alas, there
is no high level language and no implementation yet.

Jocaml [10] is another ML-based language and implementation
for distributed computing, which is based on the Join Calculus [15].
It also does automatic marshalling of data structures—including
closures—and has a much richer set of communication and mo-
bility primitives. This includes so-calledjoin patterns, which com-
pletely subsume our conjunction-only dependencies. However, Jo-
caml is not certifying, and does not automatically tolerate failure.
Therefore, we argue that Grid/ML is more appropriate for trustless,
fault-prone networks. Nonetheless, enriching our language for de-
pendencies is likely to give Grid/ML more expressive power with-
out sacrificing fault-tolerance, and is worth investigation.

Acute [26] is a new ML-like language for distributed comput-
ing. The language is tailored to a dynamic linking setting where
interacting programs across hosts may be upgraded to different
versions while the program is running. The general mechanism in
Acute for controlling locality is its dynamic rebinding system. This
allows the programmer to mark libraries so that references to them
are rebound to local versions when code arrives at a site—rather
than sending the library along with the code. In contrast, code in
Grid/ML has a uniform view of the network; cords must contain
any application library code that they use, and always dynamically
bind to the same fixed set of host resources no matter where they
are run. Another advantage of the Acute language over Grid/ML
is that Acute supports modules and preserves abstraction through
marshaled data. We plan to introduce abstract types in the next it-
eration of Grid/ML, which is described briefly below. Like Jocaml,
Acute does not certify the safety of mobile code, nor provide trans-
parent failure recovery.

6. Evaluation
Because the systems described are still the subject of ongoing
research, we dedicate a significant portion of the discussion to
evaluating our current status and discussing future and current
research.

Backend and runtime. Currently, our backend is unityped. For
performance reasons, and in order to better ensure the correctness
of the compiler, we would like to preserve types through compi-
lation and move away from unityped representations. The main
challenge in a heterogeneous representation with polymorphism is
marshalling: We cannot marshal a term unless its representation is
known. At least two solutions are available. Since Hemlock is a
whole-program compiler, we could monomorphize the entire pro-
gram so that the concrete representation of every value is known
at compile time. Alternatively, we could use an intensional type
analysis [28, 13, 31, 16] type system and pass representation in-
formation along with each run time value. Only the latter approach
allows for separate compilation.

Garbage collection on the Grid is another concern. Because we
want the Grid to run indefinitely, we need to collect stray cords and
remove items from our memo tables. There are several algorithms
for distributed garbage collection [25], though the problem is much
more difficult than garbage collection within a single heap. For-
tunately, we can tolerate even non-conservative garbage collection
by interpreting premature collection simply as failure. This gives
us simpler-than-usual requirements.

Locality. Grid/ML lacks some expressive power that is useful for
Grid programming. In particular, tasks have no locality—they have
no way to tell where they are running, nor the ability to ask to
run in a certain place. For scientific computing, this is often the
very point of Grid computing. Resources such as supercomputers,
sensing equipment, or data farms are at fixed locations, and we
need to migrate our code to those locations in order to make use of
them. My thesis work is a successor to Grid/ML for location-aware
distributed computing [22]. The language, called ML5, has a modal
type system [23] based on the modal logic S5 [20]. In this language,
expressions and bound variables are typed relative to locations,
which gives us a static guarantee that the distributed program will
make use of local resources safely. (For instance, the runtime errors
that can arise in Grid/ML from using client resources in a cord are
ruled out statically in ML5.) Nonetheless, we have evidence that
many real Grid applications can be expressed with this limited set
of primitives: applications such as SETI@Home [2], GIMPS [1],
and countless other massively-parallel tasks can be implemented
with unit-depth fork-join parallelism.

Result certification. Certified code does a good job of protecting
node owners from malicious or imperfect code providers. Unfortu-
nately, it does little to protect the users of the Grid against malicious
nodes. For instance, it would be simple to create a counterfeit Con-
ductor that published bogus results for any cord it saw. Sometimes
this can be detected by the application—a factoring application can
easily test if the factors returned have the correct product. Yet of-
ten we cannot easily distinguish good results from bad. We intend
to leave such answer certification to the application developer, but
need to provide support for certification strategies, and methods for
exiling hosts that are caught cheating. A useful property of our ap-
proach is that cords are deterministic, and a cord’s effect on the net-
work can be summarized by its result. One way to protect against
bogus results is to run the same cord on multiple, randomly cho-
sen hosts, and compare the results. As long as cheating hosts are in
the minority, we can vote to choose the correct result, and ignore
the bogus ones. When we identify unreliable hosts, we can ignore
future results from that same host. We believe it is also possible to

share evidence of fraud with other hosts, so that unreliable hosts are
soon ignored by the whole network [24]. The method is based on
digital signatures: Each host signs the results that it returns, avow-
ing that they are correct. The “evidence” that hostH is fradulent is
a message signed byX stating that the result of cordC is R, where
R is incorrect. Since any host can run the deterministic cordC
and see that the resultR is wrong, it can independently verify that
hostH is unreliable. We also need to prevent a malicious person
from creating many aliases for the same host, because each would
need to be banned separately. To do this, we propose that the cryp-
tographic keys that identify a host have a particular property that
makes them computationally difficult to generate. Thus, each host
joining the network pays an up-front, one time cost (on the order
of a day’s worth of computation). A malicious host must pay this
cost every time it is banned, in order to re-join the network. These
ideas are quite preliminary and we have not implemented them in
any system.

Portability. One of the characteristic qualities of Grids is their
heterogeneity. The Conductor currently runs on Linux and Win-
dows (using Cygwin). Because the object file format for TAL on
the two platforms is different (and incompatible), we also sup-
port two architectures: x86/ELF/Linux and x86/COFF/Windows.
We support both architectures on the same grid by using the secu-
rity policy to ensure that only Windows code is run on Windows
hosts and Linux code on Linux hosts. An application can currently
be compiled for Windows or for Linux and then run on the subset
of the clients in the network that use that same OS.

Supporting multiple architectures for the same application is
more difficult. Because we identify cords by hashes of their code
(among other things), we’d need to extend this to multiple different
code blocks for different architectures. We would also need to
specify safety policies and provide certificates separately for each
code block.4 The biggest difficulty comes when attempting the
automatic marshalling done with Hemlock. Because one cord’s
answer (running on architectureA) may be used by another cord
(running on architectureB), the code for each architecture must
agree on the format of the marshalled data. In particular, closures
must be represented in the same way, which seems to imply that
a single compiler must produce the code for each architecture
simultaneously. This seems troublesome.

Bytecode-based solutions circumvent these issues by making
the code the same for every platform. On the other hand, x86 ma-
chine code has through its ubiquity become—in some sense—a sort
of portable bytecode itself. On all modern compatible processors,
x86 is not executed directly, but dynamically compiled down to
a RISC or VLIW instruction set by the CPU. Working the more
cynical angle, it may be most economical to achieve the portabil-
ity of Java bytecode by simply calling x86 a “bytecode,” and then
providing virtual machines for any architecture without hardware
support. This is likely to be more tractable than typical emulation
tasks because we typecheck a particular subset of the machine code
for which there is well-understood semantics.

6.1 Conclusion

We have presented a system for fault-tolerant Grid programming in
ML. In addition to providing a source language based on ML, we
embrace ideas from functional programming in many components
of the system, and argue that functional ideals are an excellent
match for Grid computing in practice.

4 In fact, there is no reason to believeprima faciethat two architectures can
necessarily even admit the same safety policies!

7. Acknowledgements
The author wishes to acknowledge the helpful guidance of his
advisors, Robert Harper and Karl Crary, as well as the work of the
ConCert “tiger teams,” who designed the ConCert prototype and
wrote many of the original applications.

References
[1] GIMPS, the great internet mersenne prime search, http://mersenne.org/.

[2] SETI@Home, http://setiathome.ssl.berkeley.edu/.

[3] The third annual ICFP programming contest, http://www.cs.cornell.edu/icfp/.

[4] Secure hash standard, August 2002. FIPS 180-2, National Institute of
Standards and Technology.

[5] Andrew W. Appel. Compiling With Continuations. Cambridge
University Press, 1992.

[6] Robert D. Blumofe and Philip A. Lisiecki. Adaptive and reliable
parallel computing on networks of workstations. InProceedings
of the USENIX 1997 Annual Technical Conference on UNIX and
Advanced Computing Systems, pages 133–147, 1997.

[7] B. Chang, K. Crary, M. DeLap, R. Harper, J. Liszka, T. Murphy, VII,
and F. Pfenning. Trustless grid computing in ConCert. In M. Parashar,
editor,Grid Computing – Grid 2002 Third International Workshop,
pages 112–125, Berlin, November 2002. Springer-Verlag.

[8] Bor-Yuh Evan Chang. Iktara in ConCert: Realizing a certified grid
computing framework from a programmer’s perspective. Technical
Report CMU-CS-02-150, Carnegie Mellon, 2002.

[9] T. Chothia and D. Duggan. An architecture for secure fault-tolerant
global applications. InWorkshop on Principles of Dependable Systems
(PODSY). IEEE Press, June 2003.

[10] Sylvain Conchon and Fabrice Le Fessant. Jocaml: Mobile agents for
Objective-Caml. InFirst International Symposium on Agent Systems
and Applications (ASA’99)/Third International Symposium on Mobile
Agents (MA’99), Palm Springs, CA, USA, 1999.

[11] Karl Crary. Toward a foundational typed assembly language. Tech-
nical Report CMU-CS-02-196, Department of Computer Science,
Carnegie Mellon University, December 2002.

[12] Karl Crary, Michael Hicks, and Stephanie Weirich. Safe and flexible
dynamic linking of native code. In2000 ACM SIGPLAN Workshop
on Types in Compilation, September 2000.

[13] Karl Crary and Stephanie Weirich. Flexible type analysis. In
International Conference on Functional Programming, pages 233–
248, 1999.

[14] Ian Foster and Carl Kesselman. The Globus project: a status report.
Future Generation Computer Systems, 15(5–6):607–621, 1999.

[15] C. Fournet and G. Gonthier. The reflexive chemical abstract machine
and the Join-calculus. In23rd ACM Symposium on Principles of
Programming Languages, January 1996.

[16] Robert Harper and Greg Morrisett. Compiling polymorphism using
intensional type analysis. InPOPL 1995: The 22nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages
130–141, San Francisco, CA, January 1995.

[17] Graham Hutton. Higher-order functions for parsing.Journal of
Functional Programming, 2(3):323–343, July 1992.

[18] David B. Johnson and Willy Zwaenepoel. Recovery in distributed
systems using optimistic message logging and checkpointing. In
Proc. 7th Annual ACM Symp. on Principles of Distributed Computing,
pages 171–181, Toronto (Canada), 1988.

[19] B. Kuszmaul. The StarTech massively parallel chess program.Journal
of the International Computer Chess Association, 18(1):3–19, 1995.

[20] Clarence Irving Lewis.A Survey of Symbolic Logic. University of
California Press, 1918.

[21] Greg Morrisett, Karl Crary, Neal Glew, Dan Grossman, Richard
Samuels, Frederick Smith, David Walker, Stephanie Weirich, and

Steve Zdancewic. TALx86: A realistic typed assembly language.
In 1999 ACM SIGPLAN Workshop on Compiler Support for System
Software, pages 25–35, Atlanta, Georgia, May 1999.

[22] Tom Murphy, VII. Modal types for mobile code (thesis proposal).
Technical Report CMU-CS-06-112, Carnegie Mellon, Pittsburgh,
Pennsylvania, USA, Feb 2006.

[23] Tom Murphy, VII, Karl Crary, Robert Harper, and Frank Pfenning.
A symmetric modal lambda calculus for distributed computing.
Technical Report CMU-CS-04-105, Carnegie Mellon University, Mar
2004.

[24] Tom Murphy, VII and Amit K. Manjhi. Anonymous identity and trust
in peer-to-peer networks. http://www.cs.cmu.edu/˜tom7/papers/.

[25] David Plainfosśe and Marc Shapiro. A survey of distributed collection
techniques. Technical report, BROADCAST, 1994.

[26] Peter Sewell, James J. Leifer, Keith Wansbrough, Francesco Zappa
Nardelli, Mair Allen-Williams, Pierre Habouzit, and Viktor Vafeiadis.
Acute: high-level programming language design for distributed com-
putation. InInternational Conference on Functional Programming
(ICFP) 2005, Tallinn, Estonia, September 2005.

[27] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and
Hari Balakrishnan. Chord: A scalable peer-to-peer lookup service
for internet applications. InProceedings of the 2001 conference on
applications, technologies, architectures, and protocols for computer
communications, pages 149–160. ACM Press, 2001.

[28] Valery Trifonov, Bratin Saha, and Zhong Shao. Fully reflexive
intensional type analysis.ACM SIGPLAN Notices, 35(9):82–93,
2000.

[29] Joseph Vanderwaart and Karl Crary. Foundational typed assembly
language for grid computing. Technical Report CMU-CS-04-104,
Department of Computer Science, Carnegie Mellon University,
February 2004.

[30] Xiaoyun Wang, Yiqun Yin, and Hongbo Yu. Finding collisions in the
full sha-1. InCrypto ’05, August 2005.

[31] Stephanie Weirich. Type-safe cast: Functional pearl. InProceedings
of the Fifth ACM SIGPLAN International Conference on Functional
Programming, pages 58–67, Montreal, Canada, September 2000.

