
The fluint8 Software Integer Library

Jim McCann∗

TCHOW llc
Tom Murphy VII†

tom7.org foundation

= −1S · 2E−127−23 · (223 +M)
Figure 1: Our library performs unsigned integer operations using only arithmetic operations on IEEE754 floating point
numbers stored in binary32 format (pictured).

Abstract

We present fluint8, a library for performing integer math, in-
cluding basic arithmetic and bitwise logical operations, using
only basic floating point operations.

CR Categories: (1.10100100011)2×211 [Software]: Soft-
ware Engineering—Coding Tools and Techniques

1 Introduction

There are a surfeit of libraries that exist to perform float-
ing point operations on processors that only support integer
math. This is unsurprising, as many such processors exist
– from ancient 286’s to modern embedded microcontrollers.
These libraries use many integer instructions to emulate the
action of a floating point unit, providing correct and useful
(if slow) results.

We present a small header-only C library to emulate integer
operations – specifically 8-bit unsigned integer operations –
using standard IEEE 754 single-precision (binary32) floating
point math. Our presented operations have been designed to
be succinct but also pleasantly puzzling.

As far as we are aware, no processor exists for which this li-
brary would be required. However, perhaps you should con-
sider that a challenge.

2 Floating Point

An IEEE 754 single-precision floating point number (bi-
nary32 format) is stored as a sign bit, a 8-bit exponent, and
a 23-bit mantissa (Figure 1). Except for special cases, the
number represented by a floating point number with sign S,
exponent E, and mantissa M is ‡:

−1S · (1.M)2 · 2E−127

∗e-mail: ix@tchow.com
† e-mail: tom7@tom7.org
‡or at least this is what wikipedia says, so I’m going with that, and it

seems to work out.

Particularly, notice that the leading “1” in the fraction is im-
plicit in the representation (it is implied by a non-zero expo-
nent§).

This means that the range of integers that can be represented
(without loss of precision) is

[−224, 224] = [−16777216, 16777216]

which, conveniently, is far more than the [0, 255] range
needed for storing 8-bit unsigned integers.

When floating point operations result in numbers that cannot
be accurately represented, the results are rounded according
to the current rounding mode. The default rounding mode
assumed in this paper is roundTiesToEven. I would say that
it does what you expect, but floating point numbers seldom
manage that feat. Regardless, this rounding mode means
that whenever a value is exactly halfway between two rep-
resentable numbers, the number with a least-significant-bit
of 0 is picked.

Rounding and precision loss leads to this fun fact:

16777216.0f + 1.0f - 1.0f == 16777215.0f
16777216.0f - 1.0f + 1.0f == 16777216.0f

(Hot take: floating-point operations are non-commutative.)

3 The fluint8 Library

The fluint8 library provides all of the mathematical and logi-
cal operations one expects on 8-bit integers, using only float-
ing point addition, subtraction, multiplication, and division
– other than a loop with fixed bounds which could be un-
rolled by the compiler, no conditionals or function calls are
required.

Full source code for the library (and this paper) are available
at https://github.com/ixchow/fluint8.

In this section we go through the library operation by opera-
tion, explaining how each function works.

§An all-zero exponent is used for special numbers like zero, but we’re
not going to go into that. Wait, we just did.

https://github.com/ixchow/fluint8


Figure 2: Comparing fmodf(x, 256.0f) to
the expression x - 127.5f + 3221225472.0f
- 3221225472.0f over the range [-256.0f,
512.0f]. Notice that the expression is positive for nega-
tive numbers, making it more useful for simulating integer
rollover. Plot created using gnuplot.

3.1 Storage Format

Our library represents unsigned 8-bit integers as their equiv-
alent floating point values. In other words, the value
uint t(127) is represented as 127.0f. This straight-
forward equivalence is convenient when writing basic math-
ematical functions.

In order to support, e.g., reading data from files, our library
includes functions that convert between floating point num-
bers and bit-patterns of their equivalent 8-bit unsigned rep-
resentation.

void fu8 to bits(float a, void *out) {
a += 8388608.0f;
memcpy(out, &a, (size t)(1.0f));

}

The function fu8 to bits adds a large enough number
to a that its mantissa’s least-significant bit now represents
1. Essentially, the code is shoving the integer information
stored in a to the least-significant-byte of the representation,
and then copying¶ it out to the destination.

The same trick works when setting a floating point number
from an integer bit pattern:

float fu8 from bits(void const *from) {
float a = 8388608.0f;
memcpy(&a, from, (size t)(1.0f));
return a - 8388608.0f;

}

¶ The astute reader will notice that we’ve taken care to avoid using an in-
teger constant as a parameter to memcpy. Presumably on processors with-
out integer support size t must be a floating-point type. And, yes, we
promised above not to use function calls, but it’s hard to copy a byte with-
out integer types.

Figure 3: Comparing floorf(x) to the expression x
+ 0.50390625f + 8388608.0f - 8388609.0f
over the all quotients [0.0f, 255.0f] / [1.0f,
255.0f]. The functions match at all plotted points. Plot
created using R.

3.2 Arithmetic Functions

Our library implements +, -, *, /, +, and - by treating float-
ing point numbers as real numbers; an approach that often
works, but requires some post-processing to deal with roll-
over:

float fu8 add(float a, float b) {
float x = a + b;
x += x - 127.5f + 3221225472.0f -

3221225472.0f;
return x;

}

Here, the second line of the function computes fmodf(x,
256.0f) by rounding x to the next-greater multiple of
256.0f (rounding is forced by adding 3221225472.0f
to make the least-significant-digit of the number have value
256), then subtracting this rounded value. Don’t believe us?
Examine the convincing graph in Figure 2.

Most of the remaining math functions follow this “operate
then wrap” paradigm:

float fu8 sub(float a, float b) {
float x = a - b;
x -= x - 127.5f + 3221225472.0f -

3221225472.0f;
return x;

}
float fu8 mul(float a, float b) {

float x = a * b;
x -= x - 127.5f + 3221225472.0f -

3221225472.0f;
return x;

}
float fu8 pos(float a) {

return a;
}



Figure 4: graph of 255.0f - x (the bitwise complement
of x). Plot created using a TI-92 Plus graphing calculator.

float fu8 neg(float a) {
return (a + 127.5f + 3221225472.0f -

3221225472.0f) - a;
}

Our add-and-subtract modulus function always returns a pos-
itive number, which we take advantage of in the subtraction
function. The negation function uses a similar trick to either
subtract a from 256.0f if positive or from 0.0f otherwise.

float fu8 div(float a, float b) {
float x = a / b;
x = x + 0.50390625f + 8388608.0f -

8388609.0f;
return x;

}

The division function computes the floor of a value by round-
ing that value to the next-largest and subtracting one (Fig-
ure 3). In this particular instance, the constant required is
small enough that the subtraction of one can be rolled into the
subtraction of the large constant (we choose this over round-
ing down mostly for a e s t h e t i c reasons).

For the division and modulus operations, fluint8 diverges
from the normal behavior of integer instructions when the
denominator is zero. A typical processor triggers a fault
upon integer division by zero, but IEEE 754 instead returns
one of the special values Infinity, -Infinity (or NaN) and con-
tinues calculating. After this point, fluint8 may produce non-
sense results. However, this is strictly compliant with the C
and C++ standard, for which integer division by zero is for-
mally undefined behavior.‖

‖“If the second operand of / or % is zero the behavior is undefined.” —
C++03 5.6.4

Figure 5: The value of a + 1.0f + c-c)/ 2.0f for c
ranging from 2147483648.0f (milt8) to 16777216.0f
(milt1). Plot created in Google Sheets.

3.3 Bitwise Operations

Things really get interesting when we begin to look at bit-
wise operations, which aren’t standard operations on floating
point numbers∗∗.

Let’s begin with bitwise negation (˜). This one is relatively
easy to explain – an unsigned 8-bit integer plus its bitwise
complement is always 255, which makes negation as easy as
subtraction (Figure 4):

float fu8 not(float a) {
return 255.0f - a;

}

Things get a bit more interesting when computing bitwise
and (&):

float fu8 and(float a, float b) {
float ax, bx, x = 0.0f;
for (float c = 2147483648.0f;

c != 8388608.0f; c *= 0.5f) {
a -= ax = (a + 1.0f + c-c)/ 2.0f;
b -= bx = (b + 1.0f + c-c)/ 2.0f;
x = 0.5f * x + ax * bx;

}
return x;

}

Note that though this is presented as a loop, the loop has
constant bounds and could be unrolled by a compiler into
eight repetitions of the same code.

This code peels apart a and b bit-by-bit using a similar trick
to the floating point modulus idea we explained earlier. In
this case, however, we’ve formatted the code so it has a little
waving guy in it, who we will call Milt:

c-c)/
∗∗Though they seem well-defined; maybe a language-designer oversight?



Though it looks like Milt is just hanging out, minding its own
business, and not changing the value of the expression, Milt
is in fact doing something surprisingly nonlinear (Figure 5).

So when Milt’s eyes are 2147483648.0f, it is extracting
twice the value of the MSB of a, which in turn is stored
in ax and subtracted from a. In this way, the code peels
off each successive most-significant bit from a and b and
accumulates their product into the final result.

This leaves only the mystery of why x is being divided by
two each loop iteration. But this isn’t a mystery at all. Con-
sider computing 171 & 226. Notice that on the first iter-
ation, the product 128.0f * 128.0f would be added to
x; the multiplications by a factor of 0.5f on each subse-
quent iteration simply – in aggregate – bring it to the correct
result of 128.0f.

a b ax bx x c
171 226
43 98 128 128 16384 2147483648
43 34 0 64 8192 1073741824
11 2 32 32 5120 536870912
11 2 0 0 2560 268435456
3 2 8 0 1280 134217728
3 2 0 0 640 67108864
1 0 2 2 324 33554432
0 0 1 0 162 16777216

4 Optimization

The previous routine computes a bitwise function a single
bit at a time. While clean and logically motivated, it seems
possible to improve bandwidth by processing multiple bits at
once. As a proof-of-concept, the following routine computes
the exclusive-or function (ˆ) for two fluints in the range
0-3.

float fu8 xor2bit(float a, float b) {
return truncf(

fmod(((a * -1.89269124e+30f) +
(b * -1.09500709e+35f)) *

-1.14474456e-18f,
4.77664232f));

}

The routine works by computing a very noisy function that
just happens to come close to the correct results for all 16
possible inputs. Don’t believe us? Barbecue your eyes of
Figure 6. This routine uses fmod and truncf, but the
same loss-of-precision tricks from before can likely be used
to avoid them. Four similar expressions can be composed to
compute 8-bit exclusive-or, and/or it may be possible to find
expressions that compute more bits at once.

Figure 6: 3D graph of ((a × −1.89269124×1030 +
(b × −1.09500709 × 1035)) × −1.14474456 × 10−18)
mod 4.77664232 with a and b each ranging from 0–3.0. Plot
created using Wolfram Alpha Computational Knowledge Engine.

5 Not Optimization

The library should not be used with compiler options such as
-ffast-math (which may assume properties that do not
hold of IEEE754, like commutativity). This often optimizes
away the entire fluint8 code, causing it to misbehave (whoa,
not that fast, buddy).

6 Applications

While direct hardware applications of this technology are
currently theoretical (Section 7), there is at least one com-
pelling application for fluint8 in everyday practice. Many
pieces of software use primarily integer instructions, let-
ting the floating point unit lie completely dormant for many
nanoseconds at a time. As has been known for decades,
while the integer registers and functional units are occupied,
the otherwise idle floating point units can be used to perform
useful tasks. Unfortunately, no useful tasks were known for
floating point instructions. Now, we see that normal inte-
ger operations (such as cryptography) can be simulated with
these instructions and registers. With compiler support, a
separate thread of non-interfering floating point instructions
could be emitted, and arbitrarily interleaved with the inte-
ger ones, scheduled only when the integer unit would likely
stall for a data dependency. This technique is ultrathreading,
since it is one step better than hyperthreading. For example,
we hypothesize that during normal web browsing on a mod-
ern x86-64 processor, such code could mine as much as one
Bitcoin per 107 trillion years, with no more than a 1% loss
of efficiency.

7 Future Work

Design a processor for which this library is relevant.


	Introduction
	Floating Point
	The fluint8 Library
	Storage Format
	Arithmetic Functions
	Bitwise Operations

	Optimization
	Not Optimization
	Applications
	Future Work

