
What, if anything, is epsilon?

Dr. Tom Murphy VII Ph.D.∗

1 April 2014

Abstract

We present a sample of the values of the programming
constant epsilon as found on the internet, for several
different programming languages and with a variety of
visualizations.

Keywords: computational archaeology, epsilon, very-small

and medium-small numbers

Introduction

Epsilon, the all-spelled-out version of ε, although prop-
erly “epsilon” because it’s the lowercase Greek letter,
though it’s not like I’m going to start my paper with a
lowercase letter even if it’s technically correct, since I
like to wait at least until the second or third letter of
the paper before the reader starts doubting that I can
write or spell or have shift-keys on my keyboard, any-
way epsilon is a mathematical symbol denoting a very
small number.

In mathematics, ε usually refers to the ε–δ formula-
tion of limits. This is pretty simple and a reminder
appears in Figure 1. This paper is not about that kind
of math.

In computing, ε is used in a much more general sense
to just mean some small number or error bound. For
example, two numbers are often considered equal if their
absolute difference is less than ε.

In IEEE-754 floating-point [2], the standard way that
computers represent “real numbers,” there is a specific
formal value called “machine epsilon”, or “unit round-
off”. It is the maximum (relative) amount of error from
a single rounding operation. This number is useful if
you want to do numerical programming and be careful
about what you’re doing.

∗Copyright c© 2014 the Regents of the Wikiplia Foundation.
Appears in SIGBOVIK 2014 with the careless accounting of the
Association for Computational Heresy; IEEEEEE! press, Verlag-
Verlag volume no. 0x40-2A. U0.00

Most programmers find this subject too tedious and
simply pick a number that seems pretty small. Thus in
practice, ε is an application-specific choice. Of well-
known “constants,” ε may be the least agreed-upon,
with values seen in the wild spanning more than 300
orders of magnitude. This paper explores the practical
values of ε in real software.

Figure 1: The curvy line is the function sin x
x , which is

undefined at 0. However, its limit as x approaches 0 is 1.
The ε–δ formulation of the limit is this: For any positive

choice of ε, there exists some δ such that sin(0+δ)
0+δ is less

than 1 + ε. In other words, for an arbirarily small error
(your choice), I can produce a delta from 0 (my choice)
that brings the result within the error of the limit. This
has nothing to do with the subject of the paper.

1 Methodology

Github. Github is the hub that contains all gits, ap-
proximately 10 million of them, as of the beginning of

1

2014. The site has search functionality, which “allowed”
me to scrape one hundred pages of results for queries
like "const double epsilon =" for various languages,
as long as I didn’t do it too fast. I scraped the program-
ming languages C, C++, C], JavaScript, and Objec-
tive C. Each language has its own idiosyncracies about
how constants are defined, so I used one (or several) ap-
propriate to each language. For example, in JavaScript,
I looked for "var epsilon =". From these HTML files
I extracted all of the right-hand-side expressions, man-
ually excluded the ones that could not be evaluated (for
example because they depended on other symbols; see
Figure 2 for some examples), and then computed the
actual values for the rest. The source code to do the
scraping, extract the expressions, and tally the results
is available online.1

0.5/ELEC_REST_ENERGY

alpha/beta

4 / MULT32

exact_epsilon(true)

fmass_Epsilon * EPS_EXTRA

((Lj_Parameters*) parameters)->

scalar_traits<

EpsArray[prec]

hfwfn_->

fl.net_.opt_.epsilon

Tolerance

Figure 2: Other uninterpretable values of const

double epsilon in C. Who knows what these are sup-
posed to be?

SPEC benchmarks. Did you know that the SPEC
benchmarks [1] cost $800? Like they literally expect
me to pay them money to download the source code
so that I could grep for const double epsilon or test
my compiler out on that. Many are even based on open-
source software like Sphinx and POV-Ray. Ridiculous.
I refuse. Values of epsilon for the SPEC benchmarks do
not appear in Figure 3.

2 Results

The results of the analysis appear in several figures
which are interspersed haphazardly with this text. Each
figure presents the data in a different way, since this di-
versity in presentation should maximize the chance that

1In the Subversion repository at: https://sourceforge.net/

p/tom7misc/svn/HEAD/tree/trunk/epsilon/

Figure 3: $800? Fuck that!

one of the charts makes sense to you. The C program-
ming language has two numeric types that could rea-
sonably be used to represent ε: float and double. The
results for double appear in Figure 4 and for float in
Figure 5. C++ has those same two types, but I decided
arbitrarily to only look at double, which is in Figure 6.
Programmers in C] are very creative; their results are
presented in Figure 7. Objective C proved unpopular
for use of ε, its sparse data are in Figure 8. Finally, the
ineffable JavaScript has its results in Figure 9.

Figure 4: Values for const double epsilon in the C
programming language. In this chart, the blue (lower)
bars are the distinct values of epsilon seen. The verti-
cally aligned red (upper) bar is its count. Epsilon val-
ues are plotted on a logarithmic scale, where the mini-
mum observed value log(−708) is 303× 10−308, and the
largest log(1.609) is 5. Notes: One programmer used the
value -1e10, which is -10,000,000,000, probably mean-
ing 1e-10. This value was excluded because it has no
real logarithm.

2

Figure 5: Values for const float epsilon in the C
programming language. An x–y scatter plot where the
y coordinate is the count of the number of times that
specific value occurred, and the x coordinate is the log
of the value. Values take on a less extreme range than
with type double, naturally, ranging “only” 31 orders
of magnitude from 3.9× 10−31 to 0.

References

[1] John L. Henning. Spec cpu2006 benchmark descrip-
tions. SIGARCH Comput. Archit. News, 34(4):1–17,
September 2006.

[2] IEEE Task P754. ANSI/IEEE 754-1985, Standard
for Binary Floating-Point Arithmetic. IEEE, New
York, NY, USA, August 1985. Revised 1990.

Figure 6: Values for const double epsilon and
constexpr double epsilon in the C++ programming
language. The constexpr qualifier, a new feature of
C++11, is used very rarely (less than 1% of the time).
Notes: Five times, the programmer used 0.0 for epsilon,
which is possibly the only unjustifiable value. The value
pow(10,-13) is annotated in German “Genauigkeit-
sziel bei der Nullstellensuche,” or “Accuracy goal in the
search for zeros.”

3

Figure 7: Values for const double epsilon in the
C] programming language. In this chart, the left edge
of greyscale blocks on the left-facing flag represent
the cumulative value of the logarithm of all values of
epsilon seen so far. The right edge of the block with the
exact same greyscale value on the bottom-right flag is
the cumulative count of all definitions of epsilon so far.
It is easy to see that there are 1,000 total definitions, as
expected. Notes: One programmer defined epsilon as
1.0-18, that is, -17, probably meaning 1.0e-18. Four
used literal 0 for epsilon. Another defined epsilon as 1

/ 100000, which uses integer division and results again
in 0. Owing to the strength and creativity of C] devel-
opers, here we saw our largest value of epsilon so far,
700, and the declaration with the most significant digits:
0.0000000000000002220446049250313080847263336181640625.

Figure 8: Results for the language Objective C for
const double epsilon. Perhaps because Objective C
programmers do not use this idiom for defining con-
stants, or because it is only used to make iPhone games
where epsilon is not a concept of interest, there were
only 8 distinct values of epsilon observed. This allows
us to present the data completely in the chart. The x
axis is sin(ε) and the y axis is cos(f) where f is the
total number of times that the given value occurred in
the code.

4

Figure 9: Finally, JavaScript, the official language of
the Internet. In this “radar” plot, the data are ar-
ranged around a circle, as tuples of 〈log(ε), ε, f〉 where f
is the frequency of the value being observed. Numbers
in boxes ascend along the 0 deg axis, displaying each of
the multiples of 5 between 0 and 100, inclusive. Boxes
stack so that only part of the number is visible, but you
know what’s under there if you’ve looked at numbers
before. A spider-web-like network of interlacing lines
ascribe some additional meaning to some of the points
on the clock face. The smallest nonzero value observed
was 10−32. Notes: JavaScript programmers have the
highest tolerance for error of all languages tested, with
over 1,000 using epsilon of 0.5 or higher. One program-
mer used ε = 1024, and another 6,000,000!

5

