NaN gates and flip FLOPS

Dr. Tom Murphy VII Ph.D.*

1 April 2019

Abstract

Yes, this paper contains many layers of abstraction.

Introduction

Mathematics is fundamental to computer science, and the
foundation of mathematics is the real numbers; this is obvious
from the name. One of computing’s dirtiest secrets, however,
is that computers themselves are not based on real numbers—
rather, they are based on so-called “ones” and “zeroes” com-
bined with “logic gates” simulated with transistors. While this
suffices for most practical purposes, it is unsatisfying from a
theoretical perspective.

Recently, some progress has been made by human geniuses
on completely replacing integer calculations with calculations
on real numbers[4]. While this removes many of the hacks
present in modern software, there are still many components
of the computer (e.g. RAM, registers, the scroll lock LED, a
tiny USB-powered fan that can cool you on hot summer days
or during particularly strenuous programming sessions) that
are not integer-based, and thus cannot be replaced with real
numbers via this techique.

In this paper I give a new foundation for computing based
solely on real numbers. I begin with a brief reminder of the
definition of real numbers, although the reader is expected to
be familiar as these are pretty fundamental to everything. The
approach of the paper is then to identify a pair of real num-
bers that have nice properties (Section 1.1), and then to give
mathematical operations on these numbers that parallel the
logical operations typically used in the construction of com-
puters (Section 1.3). I then discuss how these operations can
be implemented efficiently (Section 3). I conclude with some
wild speculation.

1 Real numbers

The real numbers are described by IEEE 754, most recently
revised in AD 2008[1]. Every real number has a sign, a man-
tissa, and an exponent. Actually, this understates the elegance
of real numbers, since there are a number of numbers, such as
NaN (“not a number”) which are not of this form; NaN nas no
sign nor mantissa nor exponent. We also have inf and —inf,
which do have a sign, but no mantissa nor exponent. These

*Copyright (© 2019 the Regents of the Wikiplia Foundation. Appears
in SIGBOVIK 2019 with the half precision of the Association for Com-
putational Heresy; IEEFEEFEE! press, Verlag-Verlag volume no. 0x40-2A.
$-0.00

are the infinite numbers that you get if you count very high or
very low. Excitingly, we also have both positive and negative
versions of 0. Some numbers have multiple representations,
and almost all numbers cannot be represented at all.

The real numbers have an equality operation ==. This op-
eration has some very exciting properties which are unusual
for an equivalence relation: It is not reflexive (NaN == NaN is
false), and does not obey substitution (for +0 == —0 is true,
but 1/, o ==1/_q is false).

As a result, real numbers are an absolute joy to work with.

1.1 Choosing some distinguished values

Computing will need at least two different values. We could
choose 0.0 and 1.0 as in “binary,” but these numbers are ex-
tremely arbitrary; why not 1.0 and 2.0? e and A7 These
numbers are easily confused with one another. It seems better
to use distinguished values, making the resulting mathematics
more distinguished. One of the most distinguished numbers
is NaN (Figure 1). One nice thing about using the number
NaN is that it is not comparable to other numbers, e.g. both
NaN < 0.0 and 0.0 < NaN are false. Does it really make sense
for our fundamental particles to be ordered (e.g. 0 < 1)? The
lack of symmetry is abhorrent.

A

Figure 1: A distinguished gentleNaN.

The two numbers we choose need to be different; alas they
cannot both be NaN, since although NaN is different from NaN
(NaN !'= NaN), it is not possible to tell them apart (except
that NaN actually has multiple binary representations—see

Section 2). Another great choice is +inf or —inf. We choose to
use +inf in order to break symmetry, and because it will make
our scientific contribution more positive.

1.2 IEEEuler’s Identity

Moreover, NaN and inf are part of the pantheon of special val-
ues, exhibiting exquisite properties, such as IEEEuler’s iden-
tity:

6Z7T —|_ 1NaN><|nf — O

because 1" is 1!, even for n = NaN.? Another nice pair of
properties ties these fundamental constants together a different
way:

.F

(ei”)_in = compound(NaN, 0)

compound(x, n) is the “compound interest” function (14z)",
defined in the IEEE 754 standard, but only available in C via
floating point extensions [2]. This function is 1 for n = 0 and
x = NaN.? More excitingly, we have e/™ = —1 (Euler) and
—17"F = 1 “because all large positive floating-point values are
even integers.” [3]

1.3 NalN’s Not GNU

People who work with real numbers are often taught that the
number NaN is propagated through all expressions that use it
(e.g. NaN —1 = NaN), like some kind of GNU Public Licensed
number. This is a misconception. We already saw in the beau-
tiful identities above that some expressions involving NaN do
not result in NaN, like 1N*N = 1 and compound(NaN,0) = 0.
But it is also the case that 1" = 1 and compound(inf,0) = 0.
Are there mathematical functions that distinguish between
NaN and inf?

It turns out that there are! For example, the functions
minNum and maxNum ([IEEE 754-2008, 5.3.1, pl9]) take two
arguments and return the min and max, respectively. They
have the special, distinguished property that “if exactly one
argument is NaN, they return the other. If both are NaN they
return NaN.”

With functions such as these, we can begin constructing
the building blocks of more interesting functions (Figure 2).
Unfortunately, maxNum(a,b) and a % b are not complete on
their own; we additionally need at least a function f(z) where

1This paper uses both exponents and footnotes extensively; please be
careful of the difference.

2[[EEE 754-2008, 9.2.1, p4d]

3[IEEE 754-2008, 9.2.1, p44]

NaN inf NaN inf

NaN inf NaN NaN
inf inf NaN inf

Figure 2: The behavior of some mathematical functions on
our distinguished values NaN and inf. maxNum returns inf if
either of its arguments is inf (some other functions have this
property, like hypot). a * b is inf only if both of its arguments
are inf (there are many other examples, like a + b).

maxNum(a, b) ax*b
NaN

inf

NaN
inf

f(NaN) = inf and f(inf) = NaN. Does such a function exist?
Yes! Several can be built from IEEE 754 primitives:

f(z) = minNum(—z,—1.0) + inf

f(z) = hypot(NaN,maxNum(1l/z, —inf))
f(z) = inf—maxNum(z,1.0)

f(z) = sqrt(copysign(inf,—x))

You can try these out in your favorite programming language,
and if they don’t work, your implementation is not IEEE 754
compliant. Why do these work? Let’s take the first one, and
compare NaN and inf for x:

x = NaN

minNum(—z, —1.0) + inf
minNum(—NaN, —1.0) + inf
—1.0+ inf

inf

x = inf

minNum(—2, —1.0) + inf
minNum(—inf, —1.0) + inf
—inf 4 inf

NaN

Thinking of NaN as false and inf as true, we now have AND
(maxNum), OR (%), and NOT (minNum(—z,—1.0)). With these
we can create arbitrary functions f(a1,as, ..., a,) that return
our choice of NaN or inf for the 2™ different combinations of
arguments. It is also possible to find more direct expressions
that compute simple functions (Figure 3).

inf — maxNum(a + b, —inf) NaN inf

NaN | inf inf

inf | inf NaN

abs(minNum(b, —a) + maxNum(b, —inf)) NaN inf
NaN | NaN inf

inf | inf NaN

—inf/maxNum(b, maxNum(a, —1)) NaN inf

NaN | inf NaN

inf | NaN NaN

Figure 3: Some interesting functions of two variables. They
are isomorphic to the boolean functions NAND, XOR and NOR
respectively, but more beautiful.

I found these functions through computer search,* using a

4Source code is available at https://sourceforge.net/p/tom7misc/
svn/HEAD/tree/trunk/nand/

parameter binary4 | binaryl16 | binary32 | binary64 | binary128 binaryy,

k, storage in bits 4 16 32 64 128 multiple of 32

D, precision in bits 2 11 24 53 113 k - round(4 * loga(k)) + 13
emax, maximum exponent e 1 15 127 1023 16383 2k—p=1 _ 1

bias = F - ¢ 1 15 127 1023 16383 emax

signbits 1 1 1 1 1 1

w, exponent width 2 5 8 11 15 round(4 * loga(k)) - 13

t, trailing significand width 1 10 23 52 112 k-w-1

k, storage width 4 16 32 64 128 1+w+t

Figure 4: Parameters for the newly-introduced binary4 encoding for IEEE 754, compared to the standard widths (see Table 3.5

in the standard[1]).

technique like bottom-up logic programming [5]. I start with a
small set of constants, including arguments a and b, and then
compute all of the expressions that can be made by applying
a single mathematical function (e.g. abs(x), —z) or binary
mathematical function (z + y, z/y, maxNum(z,y)) to existing
expressions. The expression is actually a collection of values
taken on for each possible substitution (in {NaN, inf}) to argu-
ments a and b (i.e., it represents a function). If the expression
has the correct values for each possible assignment to the ar-
guments, then we are done. We only need to keep one (the
smallest) expression that represents a distinct function, but
note that we have to consider intermediate expressions that
compute values other than NaN and inf. Also note that we
need one of minNum, maxNum or copySign in order to compute
the NOT function; we could think of these functions as therefore
essential to mathematical completeness.

Particularly nice is inf — maxNum(a + b, —inf), which returns
inf if either of its arguments is NaN. We will call this the “NAN
gate”, for “Not NaN”. The NAN gate is exciting because it can
be used on its own to construct all other boolean functions! We
can use NaN, inf, and this function to construct any computer
and any computable function. Beautiful!

To program with numbers on computers, the real numbers
are represented as strings of bits. Next we’ll talk about efficient
representations that allow us to manipulate NaN and inf with
NAN gates.

2 The binary4 representation

IEEE 754 natively defines several bit widths for floating-
point values, such as the 32-bit binary32 (aka “single-precision
float”) and 64-bit binary64 (aka “double-precision float”). The
specification is parameterized to allow other bit widths; for ex-
ample, half-precision 16-bit floats are common in GPU code
for machine learning applications [7]. Smaller floats sacrifice
precision, but require less space and allow faster calculations.
For our purposes in this paper, since we only need to represent
the two numbers NaN and inf, we are interested in the smallest
possible representation.

This section describes the binary4 representation, a four-bit
floating point number that is clearly allowed by the IEEE 754
standard.

The representation of any floating-point number has a single
sign bit, some number w of exponent bits, and some number
t of mantissa bits. For binary32, w = 8 and ¢t = 23; and with
the sign bit we have 23 + 8 + 1 = 32 bits as expected. We

s ET | value

0000 | +0

0001 | subnormal: 2°% 217251 = 1% 15 x1 =0.5
0010 | normal: 20 % (1 + 145 %0) =1
0011 | 2% (1+1ox1) =15

0100 | 21+ (1+1%x0) =2

0101 | 2'%(1+'hx1)=3

0110 | +inf

0111 | NaN

1000 | -0

1001 | —0.5

1010 | -1

1011 | —-1.5

1100 | =2

1101 | =3

1110 | —inf

1111 | NaN

Figure 5: All 16 values representable in binary4 floating-point.
The format works reasonably well even at this very low preci-
sion, although note how many of the values are not finite.

need at least a sign bit, but what are the smallest permissible
values of w and ¢7

The most stringent constraint on w comes in [[EEE 75/-
2008, 3.4, p9], which states

The range of the encoding’s biased exponent E shall
include:

— every integer between 1 and 2* — 2, inclusive, to
encode normal numbers

— the reserved value 0 to encode +0 and subnor-
mal numbers

— the reserved value 2% — 1 to encode oo and
NaNlNs.

F is the binary number encoded by w. It must include at
least the two special values consisting of all zeroes and all
ones (second and third clause). A conservative reading of
“every integer between 1 and 2% — 2” seems to require that
1 < 2% —2 (otherwise how could the interval be inclusive of its
endpoints?), which would imply that w is at least 2. (However,
see Section 2.1 for the hypothesized case where w = 1.)

The representation of NaN and inf are distinguished by the
value of ¢t when F is all ones. We certainly need to distinguish

these, so t = 1 is the minimal size.

We have one sign bit, two exponent bits, and one mantissa
bit, for a total of four. Since “single precision” is 32 bits, “half
precision” is 16, 4 bits is “eighth precision.” Given how nicely
all this works out, shouldn’t there be an eighth base type in
most modern programming languages and GPUs? Since there
are so few values representable, it would be practical for all
the standard operations to be done in constant time via table
lookups. All 16 possible values are given in Figure 4.

Four bits is not many, but is it possible to represent these
two values more efficiently?

2.1 The hypothesized binary3 format

s ET | value

000 | +0

001 | subnormal: 2! 2172 %1 =2x1h*x1 =1
010 | +inf

011 | NaN

100 | -0

101 | -1

110 | —inf

111 | NaN

Figure 6: All 8 values of the hypothetical binary3 representa-
tion. There are no normal values; the only finite values are
the positive and negative zero and a single subnormal which
denotes 1 (or —1).

The IEEE 754 representation clearly requires a sign bit, and
for this purpose we need at least one bit for the mantissa in
order to distinguish NaN and inf. It is perhaps a stretch of the
wording, but arguably the spec permits a 1-bit exponent (w =
1). To rationalize this we need to interpret the phrase “every
integer between 1 and 2% — 2 inclusive” (that is, between 1 and
0 inclusive) as denoting the empty set. This seems reasonable.

With one bit for sign, exponent, and mantissa, we can repre-
sent just 8 different values. Here emax is 0, and the standard
clearly requires emin = 1 — emax, so emin = 1. Certainly
fishy for emin to be larger than emax, but we can just not
stress out about it; the representable values are all reasonable-
looking (Figure 6).

3 A hardware math accelerator

So now we know that we can build arbitrary computers with
the NAN gate, representing the interconnects between the gates
efficiently with binary3-coded real numbers. All that remains
is an efficient implementation of the NAN gate itself. We could
emulate such a thing in software, but software is much slower
than hardware; we would also like to maximize the number
of times that we can flip between states of the gate (the flip
FLOPS) per second.

Fortunately, there are several pieces of hardware that im-
plement IEEE 754 real numbers. I found a moderately-priced
microprocessor ($6.48/ea.), the STM32F303RDT6. This is a
32-bit ARM Cortex M4F processor with hardware floating-
point running at 72MHz [6]. In the rather-difficult-to-solder

18cocpPoC21

43

44 16

45 Y swp2

46 1 F 4 (BooT2
49 2L |13 (NRor2

PB1

pB228
PB3[22
24 PB4 RS
23lpcs PB5[RL
375¢6 | pB6 [RS8 |
38 pcy PB7R2
39pcs pBg[oL
4059 PB9 (62
Slpc1o PBLO 22
X 52pc11 pB11 20
33pc12 pB12 33
2{pc13 PBL3 2
L 3{pc1s PB14 P2
—47pc15 PB15 26

18 yss
3Uyss
47 yss
63 yss
12 yssa

u3
2| STM32F303RDTx

=

[GND)
[GND)
[GND)
[GND)
[GND)

Figure 7: The STM32F303RDT6 wired up as 5 NAN gates,
shown here in situ. This is a portion of a larger schematic.
Also shown is some support hardware needed for each micro-
processor: A programming header, 5 filter capacitors, a crystal
oscillator circuit, and a reset switch with external pull-up.

10mm surface-mount LQFP64 package, it has 64 pins, 51 of
which can be used for general-purpose I0. Since a NAN gate
using the binary3 representation needs 9 pins (3 x 2 for the
inputs, 3 for the outputs), it is feasible to implement five NAN
gates on the same chip with a few pins left over for jiggery
pokery (Figure 7).

The hardware math accelerator itself can be thought of
as a floating point unit (FPU), but one that is stream-
lined to run only a single instruction, the universal function
inf —maxNum(a + b, —inf). This is a function taking two binary3
real numbers and outputting a single binary3 number. Since
there are only 2% = 64 possible inputs, it can be straightfor-
wardly implemented with table lookup, but this would require
dozens of microprocessors, which might exceed our power bud-
get. In fact there is significant structure to the function; for
one thing, it can only return NaN or inf (even if arguments like
-1.0 or 0.0 are given), and the binary3 representation of these
only differ in one bit. Equivalent logic to determine that bit is
as follows:

GND

A7

P =t
*ﬂg!vy

%7

Figure 8: A beautiful hand-routed circuit board implementing a universal math accelerator, using only the universal NAN gate

implemented with native floating point hardware.

if isfinite(a) && isfinite(b)
then
// inf - (a + b) =
0
else
// a + b is nan when a is nan, b is nan, or a and b are
// infinites with different signs. If they are both
// -inf, then we have max(-inf, -inf) anyway, which is
// the same as max(nan, -inf). So we have:
if a == inf && b == inf
// both positive infinities
// inf - inf = nan
1
else
// inf - -inf = inf
0

inf

So ultimately this function only returns 1 in the case that
both inputs are exactly +inf, the pattern 0 1 0.

If the inputs are a0 al a2, b0, bl, b2, and outputs are c0,
cl, c2, then:

cO =0
cl =1
c2 = a0 && 'a2 && 'b0 && !'b2 && al && bl

So we can hardwire the outputs c0 and cl, and use the
microprocessor-based NAN gates to compute c2 as a small
boolean function.

Of course, each 0 or 1 above is actually itself a binary3-
coded NaN or inf. Thus on the physical circuit board, this
math accelerator has 2 x 3 x 3 input pins and 1 x 3 x 3 output
pins. This is just shy of the total number of IO pins on the
Raspberry Pi, so we use such a computer to drive the math
accelerator. Given the large number of traces and small foot-
print of the microprocessors, routing the board gets somewhat
involved (Figure 8).

As of the SIGBOVIK 2019 deadline, such a circuit board
has been manufactured in China and is in possession of the

author (actually the minimum order quantity of 10), but he
is somewhat nervous about his ability to hand-solder these
0.lmm surface-mount leads, so we’ll see how it goes! Please
see http://tom7.org/nan for project updates or an embar-
rassing 404 Not Found if I fail to reboot computing using the
beautiful foundation of real numbers.

References

[1] 754-2008 IEEE standard for floating-point arithmetic.
Technical Report 754-2008, IEEE Computer Society, Au-
gust 2008.

[2] Floating-point extensions for C—part 4: Supplementary
functions. Technical Report TS 18661-4:2015, ISO/IEC,
2015.

[3] JTC1-SC22-WG14. Rationale for international standard—
programming languages—C. Technical Report Revision
5.10, ISO/IEC 9899, April 2003. http://www.open-std.
org/jtcl/sc22/wgld/www/C99RationaleVs.10.pdf.

[4] Jim McCann and Tom Murphy, VII. The fluint8 soft-
ware integer library. In A Record of the Proceedings
of SIGBOVIK 2018, pages 125-128. ACH, April 2018.
sigbovik.org/2018.

[5] Frank Pfenning. Bottom-up logic programming, November
2006. Course notes for 15-819K: Logic Programming.

[6] STMicroelectronics. STM32F303xD STM32F303xE.
ARM®Cortex®-M4 32b MCU+FPU, up to 512kb flash,
80kb SRAM, FSMC, 4 ADCs, 2 DAC ch., 7 comp, 4 op-
amp, 2.0-3.6 V, October 2016. Revision 5.

[7] Wikipedia. —Half-precision floating-point format, 2019.
https://en.wikipedia.org/wiki/Half-precision_
floating-point_format.

