
Lowestcase and uppestcase letters: Advances in derp learning

Dr. Tom Murphy VII Ph.D.

1 April 2021

1 Introduction

Have you ever been writing something on the internet and
wanted to convey that you ARE FEELING ANGRY? Con-
versely, have you ever fired back a super quick dm and u
wanted to make it clear that it was like super caZ and so
u didnt use ne capitals or punctuation dots except 4 that
one place where u needed to use the international phonetic
alphabet because u dont no how to write caZ as in short for
casual without it lol

If so, you made use of the fact that all letters have UP-
PERCASE VERSIONS (e.g. signifying ANGER) and low-
ercase versions (e.g. signifying u dont care lol). These di-
mensions have other uses, for example, it is polite to start
a person’s name with a capital letter to show that you took
the time to regard their humanity (as it takes extra work
to press the caps lock key, press the first letter of their
name, and then press the caps lock key again to turn it
off). In German, Nouns start with uppercase Letters, sig-
nifying Superiority over other grammatical Categories like
Verbs and Adjectives. Lowercase letters can be used to
conserve printer ink. Actually, I’m not sure that lowercase
letters have any other uses, but let’s just roll with it.

There’s nothing wrong with this (despite the classical
advice to use shift to reduce conflict [2]). But the thing is:
What if I’m even MORE ANGRY THAN I WAS BEFORE?
There are some standard sorts of typographic emphasis, like
I can be BOLD ANGRY or BIG BOLD ITALIC
UNDERLINE ANGRY or COMBINE
A LOT OF THESE ANGERS, each
with its own nuances, depending on the cascading style
sheet or LaTeX class file. To be even more casual than
lowercase, u can learn 2 write like this, and shrink away and
also cross out ur words in shame in advance of them even
being read, but there are few other options for de-emphasis.
Plus, when I’m FEELING PRETTY ANGRY, TOM, how
do I capitalize that already-capitalized T in order to show
the proper reverence for your humanity?

This paper is about unshackling this dimension of human
expression by introducing letterforms further along the up-
percase and lowercase dimensions. Basically, we want to
know what the upperercase version of uppercase T is, and
a lowerercase version of lowercase t is.

*Copyright © 2021 the Regents of the Wikiplia Foundation. Ap-

pears in 2021 with the OS2TypoLinegap of the Asso-
ciation for Computational Heresy; IEEEEEE! press, Verlag-Verlag
volume no. 0x40-2A. 1 em

1.1 Induction

Today we’re just concerned with English letters, of which
there are only 26. To create an upperercase and lower-
ercase alphabet by hand is O(52 pick up), which for a guy
who likes drawing letters anyway and who alphabetized
Star Wars for fun, is not much to ask. In fact I drew such
alphabets in Figure 1 just now.

Figure 1: Probably someone already had this idea and did
it before I was even born, thus taking the fun out of it for
the rest of us, but here’s a hand-made alphabet with “up-
perercase” and “lowerercase” letters. You can download
this TrueType font from tom7.org/lowercase.

But, why do easy fun things by hand when you can build
a complicated automatic solution which produces much
worse results? Well, there is no good reason. I could claim
that this allows us to automatically upperercase any font,

tom7.org/lowercase

which is true, but the results are at best moderately letter-
like lumps. In principle there are several other interesting
things we can do, like apply the function over and over
to approach the uppestcase and lowestcase letters. This
sounds fun, but the results themselves are not going to im-
press. But the story of getting there may be interesting,
and even as it turns out to be “derp learning,” there will
be opportunities for more good puns. So let’s just roll with
it!

2 Capital A Artificial Intelligence

We want to machine-learn [7] two functions, make lowercase
and make uppercase. Each takes a letterform and returns a
letterform (we can choose how these are represented) and

does the needful, e.g. make lowercase(A) should return a .
In order to learn this function, we’ll at least need a lot of
examples to use as training data. A training example for
make lowercase is a letterform and its expected correspond-
ing lowercase one. We can “easily” find a large amount of

examples by using existing fonts, and pairing their A with
their a , and so on for all 26 letters, and symmetrically for
make uppercase.

However, if we only give uppercase letters to
make lowercase, it may very well learn how to generate the
corresponding lowercase letter but be unable to do any-
thing interesting for other letterforms. This is a prob-
lem because we want to use this function to see what
e.g. make lowercase(a) is.

This is not (only) the problem of overfitting. An overfit

model could work well on the letter A from one font (be-

cause it has seen that font before) but fail on A from a
new font. The property that we want is that the learned
function can also produce an interesting result on a shape
it’s never seen before, like Z . That is, it has generalized

the idea of “how to make a shape lowercase,” not simply
“how to make a capital A shape lowercase.”

The problem with this is that we don’t have any train-
ing data other than existing fonts to tell us what the low-
ercase of some arbitrary shape should look like. With-
out examples of this form, the problem is unconstrained.
make lowercase could learn to generate empty output for
anything it doesn’t recognize as a capital letter, and still
have perfect performance on the training and test set. It is
hard to generate training data of this form (even by hand)
as we don’t have much idea a priori of what a lowerercase
a should look like (except for e.g. One Artist’s Impression

from Figure 1).

This brings us to the one decent idea in this paper (which
by the way only sort of works, but let’s just roll with it).
We can at least express one characteristic property of the
make lowercase function that ought to be true even for let-
terforms we don’t have examples of: It ought to be the
inverse of make uppercase. So, we train these two models
in tandem. make lowercase is fed training examples from

the sample fonts like 〈 Q , q 〉 etc. and make uppercase

gets 〈 e , E 〉 etc. as expected. We also run the cur-
rent version of make uppercase on some letter-like shapes,
which produces some other shape. For example, say that

make uppercase() outputs . We have no idea if this
is good or not, so we don’t update the model. However,

we do provide the training example to 〈 , 〉 to the
make lowercase training queue and penalize it if it did not

predict . In this way, whatever make uppercase is do-
ing, we ask make lowercase to learn the inverse. We of
course also simultaneously do the symmetric thing, using
the output of make lowercase to create training examples
for make uppercase (Figure 2).

Figure 2: Simultaneously training the two models. This

example illustrates how a pair of letterforms A and a
from the same font becomes four training examples. The

pair straightforwardly generates an example 〈 A , a 〉 for

the make lowercase queue, and an example 〈 a , A 〉 for
the make uppercase queue. Separately, we supply a to
the make lowercase model, simply to get the current out-
put (no model updates are performed). But this

pair reversed becomes a training example 〈 , a 〉 for the
make uppercase queue.

Because make lowercase is getting training examples
of uppercase/lowercase pairs from real fonts, it remains
grounded on real letters. It is also free to generate new

shapes for the open domain (outside A – Z). However, it
is penalized if its behavior is not the inverse of whatever
make uppercase is currently doing. And since we do the
symmetric thing for make uppercase there is a (slow) feed-
back loop between the two models that keeps them from
straying too far from the grounded examples. The idea is
that this allows them to do some creative generalization
outside their native domains, but in a way that still has
some constraint.

In practice, we don’t feed arbitrary shapes to the mod-
els. We just need something letter-like, and in fact
we have a large collection of letter-like shapes among
our existing fonts! We pass already-lowercase shapes to
make lowercase, in order to generate inversion examples for
training make uppercase. These shapes are clearly letter-
like (they are letters) and are also of interest to us anyway,
since we want to try to generate lowerercase and upper-
ercase letters from the trained models.

3 1000001 Free Fonts

Sprechen of Fonts, I downloaded every font I could find
on the whole internet. This was overkill. The resulting
directory tree contained over 100,000 files, many of which
were duplicates. Exact duplicates are easy to find, but since
many of these files were the result of 30 years of community
transmission, they had acquired various mutations. One of
the first things I did was write software to automatically
remove files that were essentially duplicates even if they
weren’t exactly the same bytes.

Next, my lord, do people have bad taste! And I say this
as someone who made dozens of amateurish fonts [1] as
a high school and college student and who is contributing
several new questionable fonts as a result of this paper.
The database is just filled with garbage that is unusable
for this project: Fonts that are completely illegible, fonts
that are missing most of their characters, fonts with mil-
lions of control points, Comic Sans MS, fonts where every
glyph is a drawing of a train, fonts where everything is fine
except that just the lowercase r has a width of MAX INT,
and so on. So I built a UI (Figure 3) for efficiently and
mind-numbingly cleaning up the database by marking fonts
as broken or suitable (and also categorizing them as serif,
sans-serif, decorative, techno, etc., which classifications I
never used). In doing this I noticed another extremely com-
mon problem, which was that many fonts had the same let-
ter shapes for uppercase and lowercase letters. This would
not do for the current application!

But why manually mark fonts with nearly the same
upper- and lowercase letters, when you could build a com-
plicated automatic solution? The first pass identified fonts
whose letters were exactly the same, but this was only a
small fraction of the problematic fonts. A common issue
was that the lowercase characters were very slightly modi-
fied versions of the uppercase ones, often scaled and trans-
lated and then perhaps “optimized” during the font export.

So, for a given font, I want to reject it if for most pairs of

cased letters A , a , a is close to a linear transformation

of A . This problem can probably be solved with math,
but it didn’t sound that fun. Instead I tried out a new
tool, and it worked well enough that I’ve now added it to
the permanent rotation: Black-box function optimizers.

Black-box optimization. If you have a function and
want to find arguments that minimize its output, the most
efficient techniques are generally those like gradient de-
scent. (In fact, the backpropagation algorithm we use to

Figure 3: The interactive font data-cleaning UI. A seem-
ingly endless series of fonts presents, with single keypresses
putting the fonts into common categories such as (b)roken.

train the neural network in Section 6 is gradient descent on
the function that takes the model weights and produces an
error value for each output node.) The problem with this is
that you need to do some math to compute the derivative
of the function, and anyway you need to deal with fiddly
bits (Section 6.1) unless the function is convex and smooth,
which it will not be. If you don’t want to deal with that,
and have a fast computer (and who doesn’t?), black-box
optimization algorithms are worth considering. Here, the
interface1 is just something like (C++):

double Minimize1D(

const std::function<double(double)> &f,

double lower_bound,

double upper_bound,

int iters);

which takes a function f of type double→ double, finite
bounds on the argument’s value, the maximum number of
times to call that function, and returns the argument it
found that produced the minimal value. Not as fast as
gradient descent, but in practice “if the function is kinda
smooth” these optimizers produce excellent results! The
chief selling point for me is that I don’t need to think about
anything except for writing the function that I want mini-
mized, which I just express in normal code.

In this case, I render the letterform A and then opti-
mize a four argument function taking xoff, yoff, xscale,
yscale. This function renders a with those parame-
ters, then just computes the difference in the two rendered
bitmaps. This finds the best alignment of the two letter-
forms (under the linear transformation) in a few hundred
milliseconds (Figure 4). If the disagreement is low as a func-
tion of the total pixels, then we say that the letters have the

1Here a simplified wrapper around BiteOpt [21] in my cc-lib

library. See https://sourceforge.net/p/tom7misc/svn/HEAD/tree/

trunk/cc-lib/opt/.

https://sourceforge.net/p/tom7misc/svn/HEAD/tree/trunk/cc-lib/opt/
https://sourceforge.net/p/tom7misc/svn/HEAD/tree/trunk/cc-lib/opt/

Figure 4: Example alignment to reject the font

DrippingGooExtended. At left, A (red) and a (green)
rendered with the identity transform, and their alignment
(35% difference) below. At right, the transform found by
the black-box optimizer and the resulting alignment with
1.7% difference. Note that the shapes are still not an exact
match (probably noise introduced in the font export pro-
cess, which has to round the data to integers and might
apply other non-linear transformations like curve simpli-
fication), but these are clearly not a useful pair for the
current problem.

same case. If enough of them have the same case, we reject
the font. I set the thresholds by looking at the P/R curve
computed on random hand-labeled examples (Figure 5).

Recall

Pr
ec
is
io
n

0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00

Figure 5: Precision–recall curve for automatically detect-
ing fonts that have basically the same upper- and lowercase
shapes. It’s good! This is how you want ’em to look!

I labeled fonts using the UI until I had 10,000 that were
clean enough for a training set and passed the same-case
heuristic.

4 The simplest thing that might
work

Before getting fancy (which we we will) it’s good engineer-
ing hygiene to try the simplest thing that might just work
(it doesn’t). Fonts are represented as vector data (lines
and quadratic Bézier curves). Can we just train a network
that takes these lines and curves as input and predicts the
lower- or uppercased letter in the same format? (No.)

We’ll at least put the data in a somewhat normalized
form. The neural network will take a fixed number of in-
puts to a fixed number of outputs, so a simple approach
is to decide on some maximum number control points per
letter, and only try training on fonts whose letterforms fit
within that budget. Letterforms can be made of multiple
contours (e.g. a stacked g typically has two holes in it,

and j has two disjoint parts). I found that most clean

fonts had three or fewer contours, and when sorting them
by descending length, basically all of them fit within 100,
25, and 16 endpoints for the three. So, I only train on fonts
where all of the letters fit within this budget.2

Rather than try to work with both lines and Bézier
curves, I normalize each contour to only contain Béziers,
by turning a line segment into an equivalent Bézier with
its control point at the midpoint. This frees us from hav-
ing to distinguish the two types in the data. We also need
each of the three contours to not be too short, so I fill out
the fixed-size buffers by repeating the last point. This is not
great but does have the correct meaning (bunch of useless
zero-length edges). It has the property that any predicted
data can be rendered and has a straightforward point-by-
point error function (which might not be the case if we were
predicting a dynamic number of points).

The network I trained has an input layer size of 570 =
(100 + 25 + 16) × 4 + 3 × 2 (one control point and one
end point per Bézier curve), plus a starting point for each
of the three contours. The output layer is the same size,
plus 26 (see below). There are three hidden layers of size
308, 308, 360. The first layer is dense and the remainder
are sparse, for just about 1 million total parameters. All
layers are leaky rectified linear units (x > 0 ? x : 0.1

* x), which is fast to compute and better than sigmoids
in the output since correct values will not just be 0 and 1.
If you’re taking notes, don’t, as again this does not work
well, and I don’t know how people figure out what the right
network size is anyway. I just made it up. You can give me
your notes.

Bonus outputs. The output includes the predicted
shape, and also 26 individual predictors for each of the

26 letters. So a training example is actually like C → c
[0, 0, 1, 0, 0, . . . , 0], with the 1 in the third place because C
is the third letter. We don’t need these outputs for the
problem itself (e.g. to lowercase new letter shapes), but
there are several ideas behind this. First, the lowercasing
function we’re trying to learn does depend on the letter of
the alphabet being lowercased (in an extreme case, con-

sider the lowercase-L l and the uppercase-i I , which look
the same in many fonts but have different lowercase letter-
forms). By asking the network to learn this as well (it is
penalized when it gets the prediction wrong), it must learn
features that allow it to distinguish different letters, and

2It would not be a good idea to reject only the letters that don’t

fit, because it might result in the network being trained on more l s

(tends to be simple) than g s (tends to be complex).

those features are available for use by outputs we do care
about. This is an easy way to coax it to learn features that
I know are meaningful without having to actually engineer
feature extractors by hand (or first train separate models,
etc.). Similarly, I could have asked it to predict whether
the font is italic, serif, the character’s width, or anything
else I have on hand. Perhaps the most useful thing is that
it’s very clear what the right answer is, so it gives me an
easy way to see if the network is learning anything at all.
(It does.) Finally, we can do some silly stuff with these; see
Section 7.

I trained the network using a home-grown (why??) GPU-
based package that I wrote for Red i removal with artificial
retina networks [16]—an example of “lowercase i artificial
intelligence”—and have improved as I repurposed it for
other projects, such as Color- and piece-blind chess [17].
It is “tried and true” in the sense that “every time I tried
using it, I truly wanted to throw my computer out the win-
dow, and retire to a hermitage in the glade whenceforth I
shall nevermore be haunted by a model which has overnight
become a sea of infs and NaNs.”

Figure 6: Screenshot of train.exe running on the
first vector-based version of the problem. Shown is the
make lowercase model’s output (bottom) on four shapes
from four fonts (top). Some dust in between is the acti-
vation of the network’s layers. At the very bottom, the 26
predictions for “what letter is this?”. The output for j is

not too bad; you can see the distinct dot (a separate con-

tour) and it sort of looks like a j . The e also has two

pieces as expected but is otherwise garbage. The model is
unsure whether the second input is an H or a K, and has
predicted a shape sort of ambiguously between those two.
The z is also an embarrassment.

I was so confident that this wouldn’t work that I only
trained a make lowercase model and didn’t even worry
about the more complicated simultaneous training setup
yet. I ran this for about 22,000 rounds, some 90 million
training examples. Indeed it does not work (Figure 6). It
is not a total catastrophe, though. We can tell from the
26 bonus outputs that the model can clearly recognize let-
ters (though perhaps just by memorization). Some of the
shapes it generates are along the right lines. (Along the
right lines, get it??) I did not feel ANGRY at these re-
sults because I expected it to not really work. Still, it “has

output” and so it can be used to generate a font. I made ev-
ery glyph in Comic Sans MS [4] lowercase using the model

(with the exception of the % character, which has too
many contours—five!). Mostly this model produces small,
non-confident scrawls, like little grains of sand, so this font
is called Comic Sands (Figure 7). The TrueType version
can be downloaded from my website and installed for your
desktop publishing needs.3

4.1 Just try making it more complicated!

This problem of predicting the vector shape directly is a lot
to ask of a neural network, at least set up this way. One
thing that did not sit well with me is that the network could
in principle generate a perfect-looking result, but because
it didn’t have the points in the expected order, it would be
penalized. This makes it harder to learn, and more prone
to overfitting.4 This was one case where my questionable
reflex to make things more complicated did pay off!

First, I reduced the number of points in the input and
output. Reducing the dimension of the function being
learned generally makes learning a lot faster. This had
the side-effect of reducing the number of eligible fonts (by
about half), and by nature these fonts are simpler shapes.
These effects alone could be responsible for the improved
performance of this second try.

I also output each contour’s points in a normalized order,
starting from the point closest to the origin. This removes
one needless degree of freedom.5

Aside from the changes in the input (now 254 nodes) and
output (280), this second version has three sparse hidden
layers of size 508, 508, and 560 nodes; the first two are
dense and the latter sparse. The final model after some
pruning had 609k parameters.

As this was training, I worked on another improvement.
Ideally we would compute the difference between the pre-
dicted shape and the expected shape, regardless of how
they’re drawn. Aside from being a bit computationally
challenging, this won’t really work because we need to at-
tribute error directly to each output in order to actually
update the model in training. I spent a valuable vacation
day writing a routine to compute the best alignment of
points between the actual and expected outputs (Figure 8).
Aside from being harder than it looked, my alignment code

3Font downloads are available at http://tom7.org/lowercase/.

4For example, imagine if the database contains two versions of
Helvetica that just have their points in a different order—which is very
likely the case btw—the model will have to learn how to distinguish
between these, but using information we just don’t care about.

5We can see (well, it’s not pictured since I have far exceeded a
reasonable number of figures in this paper, but I can see) how this
manifests in the biases on the output layer, which are a proxy for the
“average prediction”. In the first model, because of the unstructured
order, these are mostly near 0.5 (center of the character) or 0.0 (de-
generate, unused contours). In this new model, the distribution of
biases is much more flat; it can learn that “the first point tends to be
near 0.25,0.25” and “the seventh point tends to be near 0.64,0.3.”

http://tom7.org/lowercase/

Figure 7: Type specimen for the generated font Comic Sands. This is the hateful Comic Sans MS run through an

early vector-based lowercasing model (Section 4). At top are Comic Sans’s letterforms A – Z run through the model
and so “made lowercase” (it’s obviously garbage). Next are a – z , made even more lowercase. Also rubbish. At the
bottom are the illegible pangrams “Dr. Jock, TV Quiz Ph.D., bags few lynx” and “Sphinx of black quartz, judge my
vow!” Although the output barely resembles letters, it does have a certain wispy Rorschach aesthetic, like a collection
of delicate moths pinned to paperboard, that one could consider framing or publishing in the proceedings of SIGBOVIK
2021. It is certainly an improvement on the original font.

ended up being pretty slow relative to the rest of training,
even worse since it ran on the CPU instead of GPU, which
reduced the training speed by 50%. I let it run for 80,000
rounds, some 331 million training examples, but eventu-
ally got bored of waiting on this approach that was slow
to train and seemed like a complicated version of an bad,
oversimplified approach. So, I control-C’d that thing and
threw this whole endeavor in the trash! But I must have
confused the Recycle Bin icon with the fairly complicated
export-to-TrueType Font process that I built, because I ran
the model on the venerable Futura [19] font and generated
Futurda (Figure 9).

5 SDFs

Don’t give up! The fixed-size input/output of neural net-
works is better suited to something like an array of pixels,
and fonts can of course be represented this way as well.
To stay in the realm of what my desktop computer with
a single GeForce 1080 can do, I wanted to keep the num-
ber of inputs and outputs pretty small. There’s already
an excellent technique for representing font data as com-
pact bitmaps, which comes from computer graphics, called
Signed Distance Fields (SDFs) [10]. In a standard rasteri-
zation of a font, each pixel of a bitmap contains 1 or 0, or
perhaps an anti-aliased value in-between. In an SDF, the
bitmap instead contains the distance to the nearest edge,
and is signed (e.g. values inside the shape are > 0, value

outside are< 0). Actually in practice we offset and saturate
the values so that they are all in [0, 1] (or bytes in [0, 255]),
with some nonzero “on-edge value” (say, 0.5) standing for
“distance 0”. In order to display the font at the size of
your choice, you then resize the SDF image with bilinear
interpolation, and then simply threshold the image. This
works surprisingly well (Figure 10).

SDFs seem well-suited for machine learning. They con-
tain more information per pixel than a plain bitmap, so
we can use a smaller input and output size. On the input
side, extremal pixels that would almost never be set in a
bitmap still have significant information (distance to the
character). The error function is just pixel-by-pixel differ-
ence. The rendering of the output is inherently tolerant of
some noise because of the sampling and thresholding. So,
this seemed like it might work really well! (It doesn’t work
that well.)

I computed some stats on the font database, and deter-
mined the following parameters for the fixed-size SDFs we
train on. The images are 36 × 36 pixels. The character
box is placed such that there are 2 pixels of top padding,
and 9 pixels of left and bottom padding. The character
box is only “nominal” in the sense that the font’s contours
can exceed its bounds, and this is completely normal for
a letter like j (which goes below the baseline and often

hangs to the left of the origin as well). I used an “on-edge
value” of 0.862 (because much more of the SDF is outside
the letter than inside) and the distance is scaled as 0.059

Figure 8: Screenshot (somewhat compacted) of train-
ing from near the final round of the vector model’s train-
ing, illustrating the permissive loss function that finds the
best alignment. At the bottom are the predicted lower-
case shapes (blue), also shown with their expected shape
(green). We require each point to be mapped (red) to a
point from the expected contour in a monotonic order (but
several can be mapped to the same one), so that we can
attribute error to each point.

units per pixel (chosen so that pixels on the outer edge of-
ten have non-zero values). Compared to the first version, I
was somewhat more permissive in what fonts I trained on,
since there was no inherent limit to the number of contours
or their complexity. I did exclude fonts whose rasteriza-
tions exceeded the bounds of the SDF, which is possible

(very wide W or low-descending j perhaps) but rare.

6 The care and feeding of sparse
matrices

Having committed to the representation, again it is “just”
a matter of heating up the GPU to apply some linear and
non-linear transforms. The initial network had an input
size of 36 × 36 = 1296 for the SDF, and the output the
same plus 26 bonus outputs (one for each letter, as before).
I started with three hidden layers of 1296, 1296, and 2916
nodes, each sparse (80% of the weights are zero). Again,
don’t take notes. This one works a bit better than before,
but still not impressive. The node references are assigned
spatially (something like the 20% of the nodes on the pre-
vious layer that are closest to the next layer’s node) but
due to a bug the spatial locality is actually pretty strange.
Every layer’s transfer function is “leaky relu” again. It
would definitely make sense to use convolutional layers for
this problem, as features like serifs, lines, curves, and so
on could appear throughout the input and output. I just
haven’t built support for that in my weird home-grown soft-

ware, yet.
I also adapted my weird home-grown software to train

the make uppercase and make lowercase models simultane-
ously. Two models fit easily in GPU memory, with plenty of
space for a stream of training data (one training instance is
only about 10kb). The only challenging thing is arranging
for them to feed each other generated “inversion” examples
(Figure 2), but this is just a matter of programming, thank
god. I should remember to do projects that are mostly a
matter of programming. Each round, 25% of the batch con-
sists of inverted examples from the symmetric model’s out-
put from a recent round. Training happens asynchronously,
but I make sure that one model is not allowed to get more
than 2 rounds ahead of the other, because I want this feed-
back loop to be somewhat tight.

So I did that and let it run for a month. Actually I had to
start over several times with different parameters and ini-
tialization weights because it would get stuck (Figure 11)
right away or as soon as I looked away from the computer.
I prayed to the dark wizard of hyperparameter tuning until
he smiled upon my initial conditions, knowing that some-
where he was adding another tick-mark next to my name
in a tidy but ultimately terrifying Moleskine notebook that
he bought on a whim in the Norman Y. Mineta San Jose
International Airport on a business trip, and still feels was
overpriced for what it is.

6.1 Fiddly bits

The training error over time appears in Figure 13. It looks
like the ones I have seen in machine learning papers, al-
though I don’t like to read other people’s papers because it
just seems like spoilers, and reading is the opposite of writ-
ing! There are several noticeable events in the curve, which
came from me fiddling with the parameters or network as
it ran. Here are some of the things I did:

Vacuuming and culling. Sometimes a node will just
be dead (basically never activates) or an edge weight will
be nearly zero. In these cases an equivalent, tidier network
can be made by dropping the node or edge. Periodically I
would perform these processes, sometimes feeling particu-
larly choppy and removing like 10% of the parameters at a
time. If these parameters are truly useless with no hope of
recovery, we simply get faster training because there’s less
work to do. Speed is exhilarating!

Widening. The opposite thing is to introduce new nodes.
Adding nodes to hidden layers is pretty easy. The thing
that worked best for me is to increase the size of the layer
by 10–15%, where each new node has random incoming
weights and bias 0. Then for each node on the next layer,
I add edges to some subset of these new nodes (again gen-
erally 10% of them) with weight 0. Since this weight is
zero, the network computes the same function, but has new
gradients to explore (in practice, it then experiences some
shock after a few training rounds, but then quickly fine-
tunes this away). More parameters means slower training,
but also more potential to learn interesting functions, or
overfit! Danger is exciting!

Figure 9: Type specimen for the generated font Futurda. This is the classic font Futura, run through the final,

improved vector-based model (Section 4.1) to make each letter lowercase. The letterforms A – Z (top) become quite
readable lowercase versions. The extra-lowercase a – z are also almost legible, but are mostly just scaled-down and
screwed up versions of the lowercase letterforms. Could definitely imagine this appearing in the “distressed fonts”
category of a 10001 Free TrueType Fonts CD-ROM in the 1990s, though.

Figure 10: The signed distance function representation of
a letterform. At the very left, a 36 × 36 pixel rasteriza-
tion of the character without anti-aliasing, for comparison.
Any scaling of this will have chunky pixel artifacts. Next,
a 36 × 36 pixel SDF of same. Third, simply scaling that
36×36 image to 180×180 pixels with bilinear sampling. Fi-
nally, that image thresholded to produce a 180× 180 pixel
rasterization, which is far superior despite being derived
from a 36 × 36 pixel image. Typically this process is per-
formed at an even higher scale and then downsampled to
produce an anti-aliased image.

Deepening. It’s also possible to add layers once the net-
work is trained. This can be done anywhere, but I liked
doing it on the output layer because this gets the most di-
rect feedback from the training examples, and so it updates
quickly and changes there are easy to understand. If you
append the identity matrix (new layer is the same size as
the previous; each node has weight 1.0 to its corresponding
node and 0.0 elsewhere) then this network computes the
same function but has new gradients to explore. Adding a
layer did seem to help unlock a new training regime (Fig-
ure 13); subjectively it also reduced some weird artifacts
in the SDFs that the model used to predict (makes sense;

this most natural thing for this layer to do is learn how to
predict a “correction” from the old prediction, for example
by smoothing/sharpening it). This seems to be borne out
by the weights, which are also fun to look at (Figure 14).
All problems in computer science can be solved by an ad-
ditional layer of indirection!

Generating features. On the other side, randomly sam-
pling pixels from the input SDF does work, but I supersti-
tiously believed that it might be better to have more spa-
tially meaningful features. I wrote a program to generate a
bunch of random simple features (one line/blob with posi-
tive weights, one line/blob with negative weights). It then
chooses a set of them that are both good (maximum stan-
dard deviation on a sample of training data) and different
from one another (redundant or even partially redundant
features are less valuable). It was nice to satisfy my super-
stition, and the dark wizard of superstitious fiddling with
neural networks in the hope that they do the thing was
pleased as well. The features are at least handsome (Fig-
ure 12). Creativity is enriching!

I presume these are all standard things that neural people
do, but they do better and smarter versions of them because
they are willing to read other people’s papers instead of
trying to figure things out from scratch all the time. But
you gotta occupy yourself somehow while it crunches for a
month.

For completeness, some other innovations that I feel are
worth mentioning:

Making the GPU code faster has really high value (could
save weeks of waiting). Since I am using OpenCL (whoa,

Figure 11: Divergent training after only 29 rounds. We
have NaN total error (hard to say if that’s good or bad?).
The example in column one is an inversion example gen-
erated by the make uppercase model, which is why it also
looks like the Tunguska event, just of the opposite sign.
The other two are regular inputs, whose predicted outputs
are black holes. Start over!

yeah, stop me right there, I know) I found a good tech-
nique was to generate different OpenCL code with con-
stants baked for each layer (for example their size and
indices_per_node); this allows the compiler to use faster
tricks in inner loops for e.g. multiplication by a compile-
time constant instead of depending on an argument or
data. I have different routines for sparse and dense lay-
ers. It might even make sense to recompile the ker-
nels for other parameters that change over the lifetime of
training, like the learning rate. The fma instruction (so
named for the physical law F = MA) is a bit faster than
potential += w * v, and I guess the compiler can’t do
this itself because of IEEE horrors. But like, who cares?
In my opinion you should be able to put it in “fast ma-
chine learning mode” where it readily makes precision er-
rors, with a command-line option like --fml. With all the
tweaking, the easiest win was to use the restrict key-
word on arguments to tell the compiler that the input can-
not alias the output, for example; this presumably helps it
schedule instructions better.

Various things in training run in parallel threads
(e.g. processing fonts, but also moving data to the GPU,
backpropagation for each example, etc.). For a long time I
had just been explicitly setting parallelism using supersti-
tious constants. For this project I finally just wrote some-
thing that would automatically and empirically determine
the number of threads that yielded the highest throughput,
and persisted that information across program starts. This
was a good idea and enters the permanent rotation.

The actual error on the predicted SDFs is pretty low; for
the make lowercase model it is around 31.3, which is like if
2.4% of the pixels were (completely) wrong, but the rest is
exactly correct. In reality, of course, the error is distributed

Figure 12: Some randomly-generated features with the
selected ones outlined in magenta, mostly shown here for
aesthetic reasons. Savvy Twitter user @iotathisworld

sees this as “the classic question: machine vision classifica-
tion or 90s roller rink carpet pattern?” to which I deflect:
“Sorry, it’s actually modern day Port Authority bus up-
holstery or Gram stain of same!” (But actually machine
vision classification was basically correct.)

throughout the pixels, and some errors are a lot more im-
portant than others. Particularly, near the threshold value,
a pixel goes from from being considered “in the letter” to
“outside” with tiny changes in its value. Changes to a pixel
with a value near 0.0 or 1.0 usually doesn’t affect the out-
put shape at all, in contrast. So one thing I did was map
the loss function (comparing expected pixel value to actual)
to “stretch out” the region near the threshold, increasing
the penalty (basically, the derivative) in that region and
decreasing it elsewhere. Looking at the code again right
now, I realize that I only applied this to the first row of the
SDF (idx < SDF_SIZE instead of SDF_SIZE * SDF_SIZE),
so that was dumb AND MAKES ME ANGRY. I will say
in my defense that at least I felt disappointed at the time
that it didn’t seem to make a difference! (The dark wizard
of superstitious fiddling nods sagely.)

Ultimately, each of the two models was trained for over
2 million rounds, which corresponds to 510 million training
examples. Each model is about 24 megabytes.

6.2 Upperercase and Lowerercase fonts

Now that we have these expensive models, we can use them
to make arbitrary letterforms uppercase or lowercase. The
output is readily rasterized (using the standard threshold-

Figure 13: The training error for the SDF models.
The red curve is the make uppercase model, which gener-
ally has a higher error rate (perhaps simply because up-
percase letters usually have more pixels set) and blue is
make lowercase. The first few rounds have error that’s off
the charts, well above 100. The most dramatic event is
around round 200,000, where I reduced the weight decay
factor to 0.999995 (from 0.9995). I guess you just need
more nines to be more reliable. There are some other visi-
ble peaks, which occur when I do things like remove nodes
with very low weights or which are almost never activated
(Section 6.1). These momentarily increase error but it is
easily fine-tuned away (e.g. by learning new biases). The
peak at around 1.4M rounds is when I added a new layer
to the end of the model, which does seem to create a new
training regime (clear downward slope now); but this also
significantly increases the training cost per round. Even
after 2,000,000 rounds, the network is still apparently im-
proving, but at a speed of about 1 pixel loss per several
weeks. Eventually the extremely strict SIGBOVIK dead-
lines mean you just have to call it done.

ing approach for SDFs) but we’d actually like to have vector
representations so that we can download the TTF files and
clog up our fonts menu forever.

6.3 Tracing

Automatically tracing bitmaps into vector form is no doubt
a solved problem, but I chose not to look at spoilers. Since
we actually have a signed distance field, we can build a
tracing routine directly off of that. The approach I took
consists of three steps. First, I generate a bitmap of the
SDF (at its native size) using the threshold. I separate the
image into a nested tree of connected components in this
pixel space; each component knows its single parent and
whether it is “land” (inside the shape) or “sea”. Characters
like e need internal cutouts, which are represented by a
different winding order (clockwise or counter-clockwise) for
the contour. Some of the tricky cases in computing this
tree structure are given in Figure 15. Once I have this tree
structure, I trace each pixel mass recursively (Figure 16).
I find a pixel on the edge, and then walk around that edge

Figure 14: The bottom-right corner of the weight matrix
for the final layer of the network. This layer was added to
the network after 1.36 million rounds, initially as the iden-
tity matrix, and so can be thought of partly as a correction
of the network’s output prior to that round (though the re-
mainder of the network continues to evolve). The x-axis is
the output nodes, and the y-axis is the nodes of the previous
layer. Note for example that the last 26 columns look pretty
different; these are the predictors for the 26 letters, which
occur in the output after the SDF pixels. Green means pos-
itive and red means negative, so if you are looking at this in
a black-and-white printout, that may explain your current
confusion. The exact diagonal is a strong green, close to
1.0, although over time these weights do diverge from the
identity somewhat. In the bottom-right corner of size 262,
we are looking at how the 26 letter predictors are derived
from the previous layer’s predictions. We see that most let-
ters are negatively correlated (makes sense; only one will
ever be 1.0) although there are some oddities (probably be-
cause it found some other, better correlates). All nodes on
this new layer have dense references to these 26 predictions
on the previous; this means that the bottom 26 rows kind
of represent biases for each of the 26 letters (what does
an average ’e’ look like?). I also included a dense region
above that, but this appears to have simply evolved the
same way as other 362 chunks have (the rest are sparse).
These chunks have a large amount of spatial similarity (sug-
gesting that the sparse sampling would be adequate), with
a meaning like “if this area of the image is bright, then
this pixel should be less bright.” It is interesting that the
pixels immediately next to the diagonal are almost always
strongly negative (sharpening operation). “Thank you for
attending my TED talk.” — Figure 14

clockwise (simple case analysis on the three pixels ahead of
me). As I walk the edge, I look at the normal (orthographic
as we are doing orthography) of the edge and see where it
reaches the edge value on the SDF; this point (a float)
is output into the contour. The process is guaranteed to
return to where we started. I recurse by negating the SDF
(outside becomes inside) and bitmap (land becomes sea),
and reverse the winding order of the result of recursion.

This gives me a perfectly fine line-based outline of the
SDF’s shape. Since I output points at every pixel, some-
times these points are inefficient (e.g. a series of colinear
points on a straight line), and sometimes they reflect sharp
corners that are not aesthetic. So I then take a second
pass at each contour, and try fitting Bézier curves to se-
quences of points while the error remains low. Again I did
fitting with a black-box optimizer, which is nice. However,
the function being minimized also needs to be able to find
the closest point on a Bézier curve to another point, and
although this can also be done easily with the black-box
optimizer, nesting an optimizer invocation inside another
one proved to be way too slow. I found an old algorithm
in a book I owned and was stymied by as a child [9].

Figure 15: Some tricky cases to think about when gen-
erating the nested connected components, as the first step
of tracing SDFs. Area 0 is the outside of the entire letter-
form, but note that we should include the top-left corner
even though it is not reachable without leaving the bounds
of the image. Area 1’s parent is 0; it has two holes within
it, Areas 2 and 3. At the top left, the four pixel chunks
making up area 4 are not actually connected, but they sep-
arate the hole which is child are 5. This hole must have
one parent, so it means that all four pixel chunks are part
of the same area 4.

Now we’re all set up to take an input shape (e.g. from
an existing font), run the make uppercase or make lowercase
model(s) on it, maybe multiple times, and trace the result-
ing SDF into a vector form that can be used in a font.
I did this on the canonical sans serif font Helvetica [14]
and serif font Times New Roman [15]. Each font is pro-
duced by a symmetric process; for example, to make a font
“more lowercase,” I take the input font’s lowercase alpha-
bet and run make lowercase on it (this becomes the output

Figure 16: Tracing the SDF from Figure 10 into vec-
tor format. Left image shows the nested connected com-
ponents. Middle image is the initial straight-line trace,
and the right image shows the simplified contours using
quadratic Béziers.

font’s lowercase letters), and then run make uppercase on
those to produce the output font’s uppercase letters. These
letters are usually recognizable as the “normal” lowercase
letters even though they’ve been through both neural net-
works. Before tracing, I do some automatic gamma ad-
justment of the SDFs (e.g. at least 5% of the pixels should
be above the threshold), as the unadjusted letters seemed
a bit too light. These fonts can also be downloaded from
http://tom7.org/lowercase/ for your corporate Power-
Point needs.

Helvetica means “of Hell”, so making the font more up-
percase give us Heavenica (Figure 17), since Heaven is
“up” from Hell. What’s lower than Hell? Spezial Hell,6 as
in “There’s a Spezial Hell for the scalpers and cryptocur-
rency environmental terrorists stockpiling GeForce 3000 se-
ries GPUs so that I can not just get one darn card at a rea-
sonable price for my important SIGBOVIK experiments.”
So the extra-lowercase version of Helvetica is Spezial Hel-
lvetica (also Figure 17).

Times New Roman refers to the multiplication operator
in algebra, which has a natural uppercase in exponentia-
tion. Thus the uppercase version of Times New Roman is
Exponential New Roman. Computing Tetration New
Roman or ↑↑↑↑ New Roman [11] is straightforward, but ex-
tremely punctilious SIGBOVIK page limits preclude show-
ing them here. Of course the lowercase version is Plus
New Roman (and similarly implies Successor New Ro-
man). Both fonts are shown in Figure 18.

The vector-based Futurda font (Figure 9) is in some
ways more readable than these, but for the sake of com-
parison, note that these fonts are actually doing some-
thing more interesting, as they are built with both the

make uppercase and make lowercase models. Futurda’s A –

Z are just the lowercase of existing uppercase letters,
which already has a correct solution and which a ML model
can simply learn through memorization. In contrast, none
of the letterforms in Heavenica can come through mem-
orization of a training example (at worst, memorizing an

6I first learned about Spezial Hell from a Rugen Bräu beer that
I drank in the Alps in Grindelwald, Switzerland (la Confédération
Hélvetique).

http://tom7.org/lowercase/

Figure 17: Type specimens for the generated font Heavenica (top) and Spezial Hellvetica (bottom). The uppercase
letters in Heavenica are make uppercase applied to uppercase letters from Helvetica, and the lowercase are make lowercase
applied to those. These lower-upperercase letters resemble regular uppercase letters, as they should; this gives you some
idea of the quality of the model. Spezial Hellvetica is the symmetric thing (its lowercase letters are make lowercase of
Helvetica’s lowercase). The sample text in this latter case is “Quartz jock vends BMW glyph fix. Twelve ziggurats
quickly jumped a finch box.”

Figure 18: Type specimens for the generated font Exponential New Roman (top) and Plus New Roman (bottom).
These were produced with the same procedure as in Figure 17, but starting with Times New Roman. The letterforms are
clearly different, so it’s not as though the models are (just) memorizing a shape for each letter. Notably, smudgy serifs
reappear when the upperercase letters are re-lowercased, as desired. Sample text here is “Amazingly few discotheques
provide jukeboxes. Those that don’t MAKE ME QUITE ANGRY.” and “By Jove, my quirky study of lexicography
won a prize! (the prize was a crappy font)”

inversion example generated by the other model after it
memorized something). Subjectively, the fonts are not very
readable and only slightly interesting, but the two models
did demonstrate a reasonable ability to invert one another’s
behavior.

7 Perfect letters, hallucinated

Oh, you don’t like letters that look bad? Instead you want
letters that look good? How about best?

The fonts in the previous section were created by mod-
ifying the case of existing letterforms, with mixed success.
We can also do this to any letter-like shape. I built a UI
for drawing letters and seeing them uppercased and lower-
cased (and then re-lowercased and re-uppercased) live, but
it’s impossible to demonstrate in paper form. It’s pretty
much what you’d expect.

The UI also tells you how much your input resembles

the various existing letters A – Z and a – z using the 26
bonus outputs that each model predicts. For example, I
learned that the “Cool S” [20]:

does not much resemble an S.
This begs us to ask the question: What shapes do look

like letters? Since the models will tell us, I can just search
over shapes and ask them. The first thing I tried was to
just generate random shapes and optimize their parameters
to produce the highest possible prediction for the target
letter, and the lowest possible prediction for the rest. This
produced results that are fully bonkers (Figure 19).

We can improve the results by searching for inputs with a
“perfect” prediction (1.0) rather than making it as high as
possible. These results may not have been fully bonkers,
but were at least downright wacky. Since there appear
to be a large variety of inputs that the model judges as
“perfect”, the most appealing results from this excursion
involved scoring some additional properties of the halluci-
nated inputs to discourage them from being so barmy. I
generated 8 × 8 bitmaps, plenty of pixels to make read-
able letters on classic computers. Rather than allowing
them to be arbitrarily noisy, I also weakly optimized for
(1) the number of pixels set being close to half and (2)
minimal transitions between on and off along each row and
column. This produced shapes that are basically letter-like,
but weird (Figure 20).

8 Chess-playing

One obvious thing to do with a program that takes an
8 × 8 bitmap and produces some kind of score for it is
to use that program to play chess [17]. Here I entered 26
such programs in the Elo World tournament [18], which

Figure 19: A randomly generated SDF (left) and its ras-
terization (right) which maximized the predicted score for

F (1.893 out of a nominal 1.0) while scoring all other let-

ters low. Parts are recognizable as an F , but other parts
are fully bonkers. This is actually one of the least weird
ones.

allows us to see how they perform against each other and
benchmark algorithms. (Badly.)

At each turn, the algorithm takes the board state that
would result from each legal move, and interprets it as an
8× 8 bitmap. It renders that bitmap as an SDF and then
runs the make lowercase model on it, and chooses the move
that minimizes the difference between its letter predictions
and the [0, 0, . . . 1, . . . 0] vector selecting the letter we are
“playing as.”

After tens of thousands of games each, it is clear that the

letter-based players are all bad at chess. Letters E and

S perform the worst (agreed on S being the worst, thank
you very much!), even worse than the “No, I insist!” strat-
egy that tries to force its opponent to capture its pieces.

The letter T (eponymous! yeah!) performs best, but still
worse than random. The numeric players like π and e are
categorically better than the alphabetical ones, but this
is not surprising because chess is more of a mathematical
game than a linguistic one (Figure 21).

The abbreviated tournament results:

name elo wins losses draws
worstfish 395.95 10 44406 18584
. . .
letter e 602.27 1717 22566 38717
letter s 602.92 1310 22020 39670
no i insist 605.47 0 20405 42595
letter f 605.60 1341 21653 40006
letter y 606.00 1347 21688 39965
letter b 607.39 1705 21870 39425
letter p 607.61 1790 21963 39247
letter l 608.75 1370 21306 40324
letter j 610.86 1737 21525 39738
letter u 611.41 1363 20947 40690
letter c 612.38 1264 20787 40949
huddle 612.60 1172 20494 41334
letter n 612.81 1395 20802 40803
letter w 613.64 1342 20723 40935
letter g 613.72 1339 20660 41001
letter v 614.18 1390 20606 41004
letter h 615.04 1328 20452 41220
letter r 615.22 1826 20932 40242
letter x 615.70 1414 20457 41129
letter m 616.31 1774 20809 40417
letter q 618.85 1378 19993 41629
letter o 619.08 1502 20078 41420
letter z 620.09 1745 20275 40980
letter d 620.10 1730 20369 40901

. . .

Figure 20: Type specimen for the generated font Perfect Hallucination. Each letter is an 8x8 bitmap that looks

as close to “perfect” as possible to the model. Perfect here means that for C , the make lowercase model outputs as
close to the vector [0, 0, 1, 0, 0, . . . , 0] (in its 26 letter predictors; the actual lowercasing is ignored) as the optimizer could
find. (Of course I didn’t search all 264 inputs, but errors are on the order of one part per thousand). The models are
completely successful at recognizing normal-looking letters as well, but it likes these even better.

8 BZ0j0Z0Z
7 Z0Z0Z0Z0
6 0a0ZpZ0m
5 ZbZ0o0or
4 0Z0Z0ZPo
3 Z0Z0A0ZP
2 0Z0ZqZ0Z
1 Z0Z0J0Z0

a b c d e f g h

Figure 21: The letter P (white) loses to the numeric

constant π (black) after 59 nonsensical moves. The P
player tries to move pieces such that the board looks like

a letter P (and no other) to the neural network. The π
player uses 3− π to arithmetically decode the sequence of
legal moves (sorted alphabetically by PGN). Neither player
is concerned with chess, really, but the letter-based players
are generally bad because they are more likely to get stuck
in local minima once they are basically happy with the
shape of the pieces.

. . . elo wins losses draws
letter a 620.57 1819 20212 40969
letter i 622.50 2169 20424 40407
letter k 622.90 1755 19878 41367
letter t 623.30 2237 20271 40492
. . .
random move 655.90 7267 20983 34750
. . .
chessmaster.nes lv1 1014.74 37302 13992 11706
. . .
stockfish1m 2831.66 60167 493 2340

9 Other Applications

People often stop me on the street to ask, Tom, Why
did you spend so much time and energy on this useless
SIGBOVIK project? To which I say, Ha! At least I am
not wasting my time reading SIGBOVIK papers or talk-
ing to strangers on the street! and run off. Although
the main purpose of SIGBOVIK is to confound bibliomet-
rics with ambiguously good-faith and high-quality research
published in a clearly satirical but superficially decorous
venue associated with a traditionally esteemed university,
it is also possible for such work to have practical applica-
tions in arts and spycraft. You simply need to give it some
thought.

For example, it is well known to internet troIIs and
DOMAlN NAME PHlSHERS that the uppercase i and

lowercase L are indistinguishable in many fonts, allow-
ing for various Tomfoolery.7 This can also be used for
steganography—hiding messages inside text without the
use of em dashes—by selectively replacing letters with their

7I actually wrote “troiis” and “domaln name phlshers”, hehe!

alternates. Each replacement only encodes one bit of infor-
mation, however. With the generic ability to uppercase
and lowercase letterforms, we can exploit this ambiguity to
generate a large variety of letterforms that can be used like
this.

For example, the following sequence of distinct letters
are hard to distinguish from one another and could all be

used in place of a lowercase L or uppercase i :

The letterforms are generated by repeated application of
the make uppercase (↑) and make lowercase (↓) networks to

the lowercase l from Helvetica. They are, from left to

right: l , ↑↓ l , ↓↑↑↓ l , ↑↓↑↓ l , ↑↑↓↓ l , ↓↓↑↑↓ l , ↓↑↑↓↓
l , ↑↑↑↓↓ l , ↓↑↓↑↑↓ l , ↓↑↑↓↑↓ l , ↓↑↑↑↓↓ l , ↑↓↓↑↑↓ l .

In this way we can encode much longer bit strings in a
single character, even thousands of iterations deep if there
is a reasonable balance of uppercasing and lowercasing op-
erations. (Too many in a row will get us stuck; see Sec-
tion 10.) Not all sequences lead to a shape like this (com-

monly they resemble i or L when starting from l), but
we can easily create a codebook of ones that do. Maybe I
have even hidden an intricate message in this paper for you
to discover? (I didn’t.)

10 To infinity, but let’s stop there

Wow, this project is pretty involved, huh? Let’s just add
another dimension to it!

We looked at what we get when we run make lowercase
on an existing lowercase letter, making it lowerercase. Of
course, we can run the model again, and get an even low-
ererercase letter. The process can be repeated indefinitely.
As it turns out, lowercasing tends to make letters smaller
and smaller (makes sense) and they eventually just turn to
dust (Figure 22) and stay that way (makes sense; “dust to
dust” [5]).

It’s possible to make the results a bit more interesting
by injecting additional energy after each iteration, either
by adjusting the gamma or “zooming” into the active area.
This seems pretty arbitrary, though. I think it is right to
conclude that the lowestcase versions of letters are canoni-
cally specks of dust.

On the other hand, repeatedly uppercasing produces
more interesting results. Uppercasing usually increases the
scale of a letter, but this effect is limited by the finiteness
of the SDF and the fact that the outer edges are very un-
likely to have high values. Moreover, although uppercase
letters are large, they also have a lot of internal space. So
iterations do not simply grow in size or fill the space, but
repeatedly grow and deteriorate like an organism in the
Game of Life [8]. Animating the SDF under iterations of

Figure 22: The first 27 iterations of the make lowercase
model on the letter o . The lowercase model generally
makes letters get smaller and smaller until they disappear.
There is still energy in the SDF (left column) but no pixels
exceed the threshold so the rasterization is empty (right
column) for about 16 iterations. Finally it reaches a stable
state, a tiny piece of colon-shaped dust, easily mistaken for
a printing error. All letters (from the test font Helvetica)
converge to this shape, except mysteriously the letter v .
Is v a different alien species, masquerading as a normal
letter for millions of years?

the model is reminiscent of a flickering candle, recalling
another well-known approach to increasing the emphasis of
text, flamingtext.com. Is this eternal flame itself the up-
pestcase letter? Alas, such an effect is not possible in print
(paper is too flammable).

Iterating the make uppercase model with 32-bit floats
does not form any cycles in 25,000,000 iterations, nor does
it if the intermediates are quantized to 8-bit ints. This is
curious because under visual observation the sequence does
appear periodic, and in fact seems to be the same charac-
teristic loop reached by all letters. Presumably there are
some oscillations with long, relatively prime periods or even
some pixels that are monotonically growing or shrinking,
but very slowly. However, if I render the SDF as a 1-bit
bitmap at 2× scale, I get a perfect cycle of 132 frames. This
appears to be two passes through the main characteristic
loop, but slightly different each time. This is not a strange

property for a letter to have; for example a typical B has
two copies of the same basic idea in it.

flamingtext.com

None of these alone could be considered the uppestcase
letter, but perhaps together they are? A natural way to
include them all in one shape is to stack them in 3D, as if
each iteration is an MRI slice of the brachial plexus.

To generate a 3D mesh, I stack the 132 SDFs in the
z direction, and this naturally yields a three-dimensional
signed distance field (trilinear interpolation). The classic
“marching cubes” algorithm [13] for mesh generation works
natively on such a field, and come to think of it, I probably
could have used that in two dimensions to trace the SDFs
to vectors. Oh, well. Fortunately there is enough spatial
similarity between the slices that it makes a reasonable 3D
shape even without interpolation, but sampled at a decent
resolution and then cleaned up, it looks quite nice; much
better than the lowercase colon. Speaking of colons, it rates
approximately a 2.5 on the Bristol stool scale [12]. A 2D
projection of the manifold is in Figure 23. I 3D-printed it
and am currently working on a way of embedding it as an
unusually tall key on my keyboard that I can press when-
ever I wanted to express ULTIMATE ANGER.

11 Conclusion

We performed an exhaustive case analysis, exploring cases
both more upper- and lower- than ever been seen before.
Sideways case was not considered, as that is nonsense. We
had modest success generating upperercase and lowerercase
letterforms through two neural network models simultane-
ously trained to be each other’s inverse, although frankly it
was much faster and more aesthetic to just do it by hand.
After really following through on the downloadables and
taking some needless excursions for effect, we saw that
these models have limits (at least informally). The low-
estcase letter is already on your keyboard; it is the ASCII
eyeballs character : . The uppestcase letter is not so easily
typed, and perhaps that is for the best.

Futura Work. I think I pretty much beat this one to
death, honestly.

Acknowledgements. For this project I used
stb_truetype.h from the excellent stb collection of single-
file libraries [3]. I did push its limits somewhat and “auto-
matically discovered” assertion failures and other crashes
(e.g. during blackbox optimization on all 100k fonts), but
it saved a lot of time. This library only helps with reading
the fonts and generating SDFs. To generate TTFs, I had to
write my own pipeline, which generates FontForge’s .SFD
(a typo factory right there) files, and then did the final ex-
port with FontForge [6]. Thanks Jason Reed for this sug-
gestion, without which I would probably still be developing
my own TTF file writer and custom hinting engine. Finally,
I would like to thank the pseudonymous SIGBOVIK pro-
gram committee for overseeing the proceedings, and the

program committee committee for overseeing
them.

References

[1] Tom 7. Divide by Zero fonts, 1993. http://fonts.

tom7.com/.

[2] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.
Compilers, principles, techniques. Addison Wesley,
1986.

[3] Sean Barrett. stb single-file libraries, 2009–2020.
https://github.com/nothings/stb.

[4] Vincent Connare. Comic Sans, 1994. https://en.

wikipedia.org/wiki/Comic_Sans.

[5] Thomas Cranmer. Burial of the Dead, Rite Two: The
Committal. In The Book of Common Prayer. The
Archbishop of Canterbury, 1552.

[6] George Williams et al. Fontforge, 2000–2015. https:

//fontforge.org/.

[7] Person Famous, and presumably rich. A neural net-
work paper that everyone cites, Beforetimes. Probably
AAAI or NIPS, idk.

[8] Martin Gardner. The fantastic combinations of John
Conway’s new solitaire game “Life”. Scientific Amer-
ican, 223:120–123, 1970.

[9] Andrew S. Glassner. Graphics Gems. Acadmic Press,
Cambridge, MA, 1990.

[10] Chris Green. Improved alpha-tested magnification for
vector textures and special effects. In Advanced Real-
Time Rendering in 3D Graphics and Games, ACM
SIGGRAPH 2007 Course 28, pages 9–18. ACM, 2007.

[11] Donald E. Knuth. Mathematics and computer science:
Coping with finiteness. Science, 194(4271):1235–1242,
December 1976.

[12] S. J. Lewis and K. W. Heaton. Stool form scale as a
useful guide to intestinal transit time. Scandinavian
Journal of Gastroenterology, 32(9):920–924, 1997.

[13] William E. Lorensen and Harvey E. Cline. March-
ing cubes: A high resolution 3D surface construction
algorithm. ACM SIGGRAPH Computer Graphics,
21(4):163–169, August 1987.

[14] Max Miedinger. Helvetica, 1957. https://en.

wikipedia.org/wiki/Helvetica.

[15] Stanley Morison. Times New Roman, 1931. https:

//en.wikipedia.org/wiki/Times_New_Roman.

[16] Tom Murphy, VII. Red i removal with artificial retina
networks. In A record of the proceedings of SIG-
BOVIK 2015, pages 27–32. ACH, April 2015. http:

//sigbovik.org/2015.

[17] Tom Murphy, VII. Color- and piece-blind chess. In A
Record of the Proceedings of SIGBOVIK 2019. ACH,
April 2019. http://sigbovik.org/2019.

http://fonts.tom7.com/
http://fonts.tom7.com/
https://github.com/nothings/stb
https://en.wikipedia.org/wiki/Comic_Sans
https://en.wikipedia.org/wiki/Comic_Sans
https://fontforge.org/
https://fontforge.org/
https://en.wikipedia.org/wiki/Helvetica
https://en.wikipedia.org/wiki/Helvetica
https://en.wikipedia.org/wiki/Times_New_Roman
https://en.wikipedia.org/wiki/Times_New_Roman
http://sigbovik.org/2015
http://sigbovik.org/2015
http://sigbovik.org/2019

[18] Tom Murphy, VII. Elo World: A framework for bench-
marking weak chess algorithms. In A Record of the
Proceedings of SIGBOVIK 2019. ACH, April 2019.
http://sigbovik.org/2019.

[19] Paul Renner. Futura, 1927. https://en.wikipedia.
org/wiki/Futura_(typeface).

[20] Unknown. Cool S. https://en.wikipedia.org/

wiki/Cool_S.

[21] Akelsey Vaneev. BITEOPT – derivative-free optimiza-
tion method, 2021. https://github.com/avaneev/

biteopt.

Figure 23: 3D manifold showing a section of the repeating
loop as the make uppercase model iteratively uppercases a
letter. (Shown here is the input q from iteration 245–377,

but they all converge to this same periodic shape.) Slices
through this shape give a letterform’s outline (or usually, a
linear interpolation between two of them). The bottom of
the shape is its “beginning” but it appears to repeat like
this forever.

http://sigbovik.org/2019
https://en.wikipedia.org/wiki/Futura_(typeface)
https://en.wikipedia.org/wiki/Futura_(typeface)
https://en.wikipedia.org/wiki/Cool_S
https://en.wikipedia.org/wiki/Cool_S
https://github.com/avaneev/biteopt
https://github.com/avaneev/biteopt

	Introduction
	Induction

	Capital A Artificial Intelligence
	1000001 Free Fonts
	The simplest thing that might work
	Just try making it more complicated!

	SDFs
	The care and feeding of sparse matrices
	Fiddly bits
	Upperercase and Lowerercase fonts
	Tracing

	Perfect letters, hallucinated
	Chess-playing
	Other Applications
	To infinity, but let's stop there
	Conclusion

