
GradIEEEnt half decent

Dr. Tom Murphy VII Ph.D.

0 April 2023

1 Introduction

Imagine you are my professor. Maybe you actually were my
professor, in which case you may already be sweating before
I say any more. The subject matter is Neural Networks.
You draw an illustration on the board with a node’s inputs,
and its output via a transfer function.

“Now this transfer function can be almost anything.
Typically it would be something like the hyperbolic tan-
gent, which looks like this.

“But it has to be a non-linear function. If it’s linear,
i.e. of the form y = mx + b, then observe that the entire
layer is a linear function. And so the entire network is just
a linear function of linear functions; itself a linear function.
We could just compute an equivalent single-layer network,
and we know that it could only fit linear functions, which
is insufficient for most problems.”

Then I raise my hand. The speed with which I raise it,
and the subtle forward pose of my arm suggests that I want
to pluck an abstract idea from the whiteboard and pervert
it. You know this look, and you’re reluctant to call on me.
But no other students are asking questions. You must call
on me.

“Tom.” It’s more like a statement then a question. It
includes the tone of spoken punctuation that, if it could,
ends the entire conversation before it begins.

“OK but, when we implement this on a computer we’ll
use some approximation of numbers, like floating point. So
the specific sequence of additions and multiplications will
matter. It’s not actually equivalent to rearrange them to a
single layer because you don’t have distributivity, commu-
tativity, etc.”

*Copyright © 2023 the Regents of the Wikiplia Foundation. Ap-
pears in SIGBOVIK 2023 with the signaling NaN of the Association
for Computational Heresy; IEEEEEE! press, Verlag-Verlag volume
no. 0x40-2A. 1 ULP

“Uh. I think that’s technically true, but for all practical
purposes . . . ”

“What about impractical purposes?”

You vigorously strangle me, and I die.

That was about 20 years ago. The world will not let us
stop thinking about neural networks. And so this question
has been on my mind for a long time. Just to be clear,
the professor was right: This is not an important question.
Theoretically I am right, but for practical purposes it prob-
ably does not matter. But I like to work at the intersection
of Theory and Impractice. We can make it matter by doing
a lot of work. And then I will continue to be right theoret-
ically, but also more right because it will only matter for
most practical purposes.

So this paper is an exhaustive exploration of what we can
do with just floating point addition and multiplication by
constants (scaling). You should only be able to make lines,
but I’ll demonstrate that due to rounding error, you can ab-
solutely use “linear” transfer functions in neural networks.
Machine learning is not the only field with a proclamation
that some function must be “non-linear,” so we’ll look at a
few of those as well. There will of course be several hearty
digressions. By studying these functions we’ll see that they
are almost arbitrarily rich, and conclude with a demonstra-
tion of their completeness in the field of Plumbing.

2 A refresher on neural networks

Let’s repeat the professor’s lesson. This section is easily
skippable if you are a plucky student who thinks they al-
ready know everything. At a high level, a Neural Network
is a way of implementing a numeric function (takes a bunch



of numbers as input, and gives a bunch of numbers as out-
put). The network consists of a number of layers, where
the first layer is the input and the last layer is the output.
Each layer is an array of nodes. Here is a simple three-layer
network with some of the nodes labeled:

The numbers that fill in each layer are its activations
(here some of these values are labeled a, b, . . . ). Each
layer’s activations are computed from (just) the previous
layer. Looking at the bold portion in the example, the
value of e is given as

e = TF (w0a+ w1b+ w2c+ w3d+ bias)

The multiplicative weight (wi) and additive bias (bias)
parameters are learned during the training of the neural
network, but just become constants when using the neural
network to compute its output.
TF is the transfer function, which is of particular inter-

est in this project. Classically, the transfer function was
some kind of sigmoid. The tanh function pictured in the
introduction is a good example of a sigmoid. The intuition
behind this is that, thinking about a node as some kind
of neuron, the neuron “fires” (activates) with some proba-
bility. This probability gets higher as its input values get
larger, but can’t be higher than 1. Note that weights can
be negative, so upstream neurons can have an inhibitory
effect. In fact it is frequently useful for neurons to “nega-
tively fire” (outputting −1). The tanh function clamps the
result symmetrically to (−1, 1) rather than a probability.

Differentiability. Another important property of the
transfer function is that it be differentiable, because the
stochastic gradient descent algorithm used to train neu-
ral networks needs to be able to move along some error-
reducing gradient, and back-propagate errors to earlier lay-
ers. This gradient is just the derivative of the function.

What transfer functions ought to exist? We used to
think that these saturating transfer functions were ideal.
But this turns out to be wrong, especially for internal
(“hidden”) layers. Transfer functions don’t need to pro-
duce probabilities, and they can have unbounded range.

A wide variety of functions will work, including extremely
simple ones. The most popular transfer function in 2023 is
the “rectified linear unit,” which looks like this:

This one is extremely easy to implement
(x < 0 ? 0 : x), is fast and seems to work very
well, possibly because its derivative is significant (one)
on the entire positive side. (In contrast, sigmoids tend
to get “stuck” because of their saturating behavior; their
derivatives become nearly zero when activations are high.)
Note that it is not actually differentiable (discontinuity at
zero) but “for all practical purposes” it is differentiable.

The (only?) apparently essential quality of the transfer
function is that it be non-linear. If it is instead of the
form TF (x) = mx + b, then any activation a is also just
a linear function of the previous layer, as linear functions
of linear functions (weighted sum) are linear. This causes
the entire network to be a linear function. It is well known
that a linear function “cannot” represent some other simple
functions, such as XOR.

∄m,n, b. XOR(x, y) ≊ mx+ ny + b

This means that with a linear transfer function, a neural
network could never learn even a simple function like XOR.
Many problems we want to learn are in fact much more
complicated.

3 A fine terminological issue

My smart math friend Jason refers to a function like f(x) =
mx+ b pejoratively as “high school linear.” Depending on
what class you’re in, this may formally be an affine function
because of the bias term b.1 Here I use “linear” to mean
a polynomial of degree ≤ 1. If you wanna perjorate me as
being in high school, so be it.

The Rules. To be precise, we will allow addition and
scaling by constants. When we have a “linear” function
of multiple variables, these variables can be individually
scaled and added, but not multiplied. So for a function
like f(x, y, z) = x + 3y − 2z + 4 is allowed, as is anything
mathematically equivalent to it (like f(x, y, z) = 2x + 4 +
2y − 2z − x+ y − 0). f(x, y, z) = xy + z is not permitted.

1In these contexts, a linear function must obey f(0×x) = 0×f(x),
so it must be zero at zero.



Figure 1: Histogram of how many values are representable
along the number line for half-precision floating point,
showing their logarithmic spacing. The x axis ranges from
−256 to 256. There are a significant number of values out-
side this range (clamped to the left and right edge), but it
is easy to see that most of the values are clustered near the
origin.

4 Half-precision IEEE-754 floating
point

In this project we’ll abuse floating point inaccuracy to cre-
ate “linear” functions (only using floating point addition
and scaling) that are not lines. For this reason, we prefer
to have a numerical system that is less accurate. In floating
point, inaccuracy comes from the fact that not all numbers
are representable (due to finite precision) and the result of
an operation is always rounded to a representable number.
IEEE-754 floating point [1] comes in different “spice levels,”
with “32-bits” being “float” and “64-bits” being “double.”
Although spice levels as low as 3 bits make sense [27], 8-bit
(“mild”) is occasionally used in real applications, and 16-
bit (“half”) is quite common in machine learning. Usually
the reason to prefer half precision is that it uses less mem-
ory, and so your GPU can store networks that are twice as
big in RAM. For this project we will also use half precision,
and we will be happy to save RAM, but more happy that
its precision is low and so it is practical (although silly)
to achieve significant rounding error. Another important
reason to choose half precision is to make the pun in the
title.

A half precision float is 16 bits: One sign bit, five bits for
the exponent, and 10 bits for the mantissa. Like all IEEE-
754 formats, there is much more precision (more values are
representable) near zero (Figure 1). Once you get to 1024,
only integers are representable. From 2048 to 4096, only
even numbers are representable. 65504 is the largest finite
number, and up here, only multiples of 32 are available.

Some CPUs have native support for half-precision IEEE-
754, but typically via non-standard intrinsics or compiler
flags. Since people using half-precision are usually doing
so in the interests of performance, many configurations
will “help” you by performing practical but incorrect opti-
mizations. This is similar to what happens when enabling
--ffast-math, which stands for Final Fantasy AST Math,
meaning that the abstract syntax tree of your program
will be manipulated using fantasies about Math that do

not apply to IEEE-754, and your Final result can be ar-
bitrarily different. For the ideas in this paper to work,
--ffast-math is prohibited. And it will be slow!

Rather than deal with non-standard stuff, I found a nice
library called half.h [29] that implements IEEE-754 com-
pliant half-precision in portable C++. I use this through-
out the project and it matches the behavior of my GPU. I
recommend it for similar hijinks.

Origins of Imprecision. Floating point does have many
perversions, but many programmers come to believe all
sorts of dangerous superstitions about it. One idea is that
floating point is somehow always inexact, and so that you
always have to check that two numbers are equal “within
some epsilon” [24]. This may work “in practice” but it is
actually pretty sloppy. Floating point imprecision is not
random, nor is it constrained to a fixed epsilon. Opera-
tions are defined much more usefully: Each one computes
the mathematically correct value, and then rounds (accord-
ing to the “rounding mode”) to the nearest representable
value. That’s it. One consequence of this is that you can
get the exact result of 32-bit multiplication by doing 64-
bit multiplication and then rounding to 32 bits. This also
means that the rounding error from a single operation can
be as large as the gap between representable numbers: Up
to 32 for half-precision. But it also means that operations
whose results can be exactly represented have no error; for
example adding integral half values less than 512 will al-
ways give an exact integer result, which can be compared
using ==. We will use this later in Section 7.1. It is neither
necessary nor sufficient compare for “equality” with some
“epsilon.”

Rounding. IEEE-754 supports multiple rounding modes,
like “round-to-zero,” and “round-to-infinity” (always round
in the positive direction). Throughout this paper we
use “round-to-nearest,” which is also the typical default
(e.g. for C++11 expressions evaluated at compile time, it
always uses round-to-nearest).2 Similar results are likely
attainable for the other rounding modes, as well as hypo-
thetical rounding modes such as “round away from near-
est,” but I have not explored this.

Getting some nonlinearity. All transfer functions im-
plemented with floating point have a finite range. For our
experiments with neural networks, we will focus on trans-
fer functions that map values in [−1, 1] to values in [−1, 1].
Almost half (48.4%) of floating point values are in this in-
terval and this is a typical nominal range for activations in
neural networks.

2There is seldom reason to change the rounding mode, and since
it is a stateful act, you’re asking for it if you do. But the round-to-
negative-infinity and round-to-positive-infinity modes are are useful
for interval arithmetic, which is arguably the only truly reasonable
way to use floating point. What you do is represent numbers as
intervals (low and high endpoints) that contain the true value, and
then perform each calculation on both endpoints. For computations
on the low endpoint, you round down, and symmetrically for the high
endpoint. This way, the true value is always within the interval, and
you also know how much inaccuracy you have accumulated!



We only have two operations: Addition and scaling.
Let’s see what kind of rounding error each of these gives
us. First, addition. In order to get a function that takes
values in [−1, 1] to values in [−1, 1], we want to first add a
constant (giving us perhaps a large value) and then add a
negative constant, bringing us back in range. For example,
the constant 128 gives us the function

f(x) = x+ 128.0− 128.0

This is of course mathematically the same as f(x) = x
(the identity), but with half precision we get a function
that looks like this

Between 128 and 256, only multiples of 0.125 are repre-
sentable. So for arguments in 0 to 1, the sum is rounded to
one of the values 128.0, 128.125, 128.25, . . . 129. From 64 to
128, multiples of 0.0625 (1/16

th) are representable. So from
−1 to 0, we get 127.0, 127.0625, 127.125, . . . 128. Subtract-
ing 128, all of the values are exactly representable, giving
us −1,−.9375, . . . ,−0.0625, 0, 0.125, . . . , 0.875, 1.
The result is a step function, but whose resolution is

twice as high for the negative range as the positive; had
we added −128 and then added 128, we would have seen
the opposite bias in resolution. We can easily see that
this function is (computationally) non-linear despite being
(mathematically) “linear.” This function is unlikely to be
a good transfer function, because for one thing it does not
have a good derivative: It’s zero most places (flat segments)
except at the discontinuities, where it is undefined. We do
test this approach (with the constant 64.0) later, though.
Scaling gives similar results. Consider

f(x) = x× 100.0× (1.0/100.0)

In this project we never actually divide (although this
would not violate linearity) since most floating point num-
bers have approximate multiplicative inverses, and many
are exact. We just compute the reciprocal 1/100 ≊
0.01000213623 ahead of time and multiply by that con-
stant. Here’s what that function looks like:

At this scale it appears linear, but it does have small im-
perfections (see zoomed region). The function is symmetric
about zero, since multiplication will do the same thing to
a positive number as it does to its negative counterpart.
Here, the roundoff error differs with the magnitude. At in-
puts close to 1.0, the results of the first multiplication must
round to the nearest multiple of 0.0625 (as in the additive
example) but this error is scaled down by a factor of 100
when we multiply back to the [−1, 1] range. So it is almost
invisible. For inputs close to 0.0, the error approaches zero.
The effect is complex and depends on the constant we mul-
tiply by. For example, if we multiply by a power of two,
this only affects the exponent, and so the result is exact.

Is that it? Of course not! We can apply these operations
in combination, and many times, to create more interesting
functions. The best approach I found in this simple family
is to repeatedly multiply the input by a number very close
to one. Here’s what happens if you multiply the input by
0.99951171875 (which is the next number smaller than one,
equal to 1− 1/2048) five hundred times, and then scale back
at the end:

f(x)=x× (1− 1/2048)× (1− 1/2048)× . . . 500 times . . .×
1.3232421875

I call this the grad1 function.
Multiplying 1.0 by (1− 1/2048) five hundred times in half

precision yields 0.755859375 (mathematically it would be
(1−1/2048)

500 = 0.78333, so there is significant accumulated
error. We set f(1.0) = 1.0 by multiplying by the inverse of
this constant, which is 1.3232421875.
Why does this result in the zig-zags? Multiplication by

(1 − 1/2048) affects numbers differently. For constants less
than 6.1094760895×10−5, the value is unchanged; we round
back up to the original value. For all other finite inputs it
produces a smaller value, but with rounding error that de-
pends on the value. This error accumulates and becomes
significant with many iterations (Figure 2). Unlike the pre-
vious functions, the output here is much smoother (it looks



Figure 2: How repeatedly multiplying by 1 − 1/2048 affects
values in [0, 1]. The width of the image is the interval [0,
1], with zero at the left.

Top: In the topmost row, we assign each pixel a hue so
that we can track where those values go. For each pixel,
we successively multiply by the constant and plot its color
in its new x position, the move to the next row down. Note
that the rainbow shrinks exponentially as expected, but not
smoothly. The black line is 500 iterations.

Bottom: The accumulated error when iteratively multi-
plying by the constant. Here the x coordinate of the value
does not move (so the middle column always represents
the value that was originally 0.5). The color illustrates
the accumulated error. For green pixels, the value is too
high compared to the mathematically correct one; for ma-
genta pixels too low. By choosing a row with alternations
between green and red, we get the zig-zag pattern of the
grad1 transfer function.

piecewise-linear); in each of these segments its derivative is
nondegenerate. Of course, this function is mathematically
linear. It is equivalent to f(x) = x× 1.036535.

So now we have a “good” candidate function, which we’ll
call grad1. It is “good” in the sense that it is computation-
ally non-linear despite being mathematically linear, so it
may prove my professor wrong. On the other hand, it re-
quires 501 floating point multiplications to compute, which
is kind of slow. The “good” news is that since there are
only 65536 16-bit values, we can easily just precompute any
function for all possible half inputs, and store it in a table
of 131072 bytes. This allows us to execute the function
efficiently when performance is important, such as during
training. (Table lookup is certainly not a mathematically
linear operation, so when we require the computation to
be linear for ideological purposes, we can perform the 501
multiplications and get the same result.)

Differentiating. Speaking of training, in order to train a
neural network using stochastic gradient descent, we need
to be able to evaluate the derivative of the transfer function
at any point. We use that derivative to decide what direc-
tion to move the parameters (it gives us the “gradient”
that we “descend”) as we propagate errors back through
the network. There is an annoyance here, or if you like, an
opportunity for a trick. We typically store the activation
of each node, which is the output of the transfer function,
but the derivative of a function is normally described in
terms of the input (for example we say if f(x) = x2 then
f ′(x) = 2x). We could store both the input and output
for this step, or store only the input and recreate the out-
puts by running the transfer function. But the trick: We
can compute the derivative as function of the output. For
f(x) = x2 we could say f ′(f(x)) = 2

√
x. Oops! That

doesn’t actually work for x2 because the square root could
either be negative or positive, and the derivative is differ-
ent depending on which one it is. In order for this trick
to work, the transfer function has to be injective.3 Fortu-
nately this is the case for the classic transfer functions, and
this trick is well known so you don’t even need to do any
math; you just look the function up.

For new transfer functions like grad1, we need to figure
something out. This function does appear injective if we
squint at it, although it is not really injective if you zoom
way in: There are some distinct inputs that result in the
same output due to rounding. But this is true for almost
all floating-point functions already. I’ll be damned if I can
come up with an analytic derivative for this thing, though.
At best it would be some piecewise linear thing, requiring
some table. Since our domain is only 16-bit, it is completely
practical to just table the entire derivative (keyed by the
output value, as we need). I do this programmatically. We
do not want the derivative to reflect the step function that
we see at very fine scales (the derivative should never be 0
for this function, for example), so I use a lowpass filter. The

3Or at least when f(x1) = f(x2), f ′(x1) = f ′(x2). For the rectified
linear unit, for example, all negative inputs are mapped to zero. But
the derivative is also just zero in this entire region.



Figure 3: Computed derivative (blue) of the grad1 function.
Since we need the derivative in terms of grad1’s output, the
derivative is oriented along the y axis; each blue dot’s x
coordinate gives the derivative at the point on the black
line that shares a y coordinate. It’s an oscilloscope!

result looks good, oscillating between two different slopes
as expected (Figure 3). The derivative is loaded into GPU
memory during training and the table lookups are plenty
fast.

4.1 Bonus digression: Downshift

Having freed myself from needing to “do math” in order
to differentiate exotic functions, I pondered other weird
transfer functions. For example, the rectified linear trans-
fer function is very simple and works well, but is it the
fastest possible transfer function that might work? It does
involve a conditional, which näıvely implies comparison and
branching (although probably most processors can do this
with a conditional move). Because the floating point for-
mat is packed with fields that represent different things,
many simple operations on its bits have interesting non-
linear behavior. The most promising I found was a right
shift by two places. It looks like this:

Shifting is about the cheapest possible thing a processor
can do. Its behavior on floating point numbers is interest-
ing:

Note the different regions for sign, exponent, and man-
tissa. The sign bit is shifted into the exponent, which

means that the output is always non-negative (like the rec-
tified linear function) and is non-linear (discontinuity at
zero, as negative numbers have a much larger exponent
that positive ones). Further nonlinearity comes from the
exponential representation (shifts divide the exponent by
four) and reinterpretation of exponent bits as mantissa bits.
There is additional weirdness in the details. Shifting by two
places is better than one, as it cannot produce Inf or NaN.
We will also evaluate this transfer function, called down-
shift2, below.

Back to the main topic. I implemented all this as a
modification of my custom neural network training and in-
ference system, “Tom7Flow.” Tom7Flow is generally much
worse than mainstream packages; it is based on deprecated
OpenCL technology, is prone to divergence or stagnation
during training due to näıve choices of hyperparameters,
etc. But it is at least well suited to silly experiments that
take the form, “What if deep learning but worse?” such
as the current exercise. In order to realize the idea com-
pletely, I modified the inference code to calculate with half-
precision arithmetic (not just the transfer function). This
means that the trained networks can be executed using
only half-precision operations (and just addition and mul-
tiplication by constants). Unfortunately, while my GPU
supports half-precision math natively, and OpenCL sup-
ports half-precision operations as an extension [11], this
extension is somehow not supported (??) by my drivers,
perhaps because OpenCL is so thoroughly deprecated. It
does support half precision as a storage format, which al-
lows you to write a full-precision float to a 16-bit value
(rounding to half) or read a 16-bit half into a float (all half
values can be represented exactly in full precision). So with
this one operation it is straightforward to implement half-
precision addition and scaling. You maintain the invariant
that any float value is always exactly a half, and after you
perform addition or multiplication, you round to half (by
storing in a 16-bit memory location and reading it back).
This definitionally produces the same results as the native
operation.4

I initially tried a version of training that worked entirely
using half precision (network parameters are half, back-
propagated errors and update values are half, etc.). This
worked badly. It is ideologically unnecessary, as we just
care about producing a final model that, during inference,
only executes linear half-precision operations (but abuses
floating point roundoff to do something interesting.) This
network can be trained using non-linear techniques (and
must anyway, since for example its computed derivative is
not linear). So during training, calculations are done using
full-precision floats, except for the forward step (where we
round to half after every operation). In addition to be-
ing simpler, representing intermediate learned weights as
floats seems to help training approach the final half values
smoothly, avoiding stalls due to underflow.

4I also verified consistent results using the half.h software imple-
mentation. Many of the evaluation results quoted in the paper are
actually executed on the CPU using this library.



4.2 Neural network experimental results

In order to evaluate this transfer function, I ran a suite
of benchmark problems. For each problem, I compare the
same network architecture (i.e. the number of layers, their
connectivity, random initialization, etc.) but using differ-
ent transfer functions.
The transfer functions are:

� grad1: The “linear” transfer function grad1 described
above.

� tanh: The hyperbolic tangent function, which is a
classic saturating (output is always in (−1, 1)) sigmoid.

� logistic: The function 1/1+e−x , another classic sigmoid
(but whose output is in (0, 1)). Each operation is per-
formed with half precision.

� leaky relu: The rectified linear unit, but with a small
slope below zero: x < 0.0 ? 0.1 * x : x. This is
the function I usually prefer in practice; its advantage
over the standard relu is that it does not “die” (zero
propagated error) when its input is negative.

� downshift2: Interpreting the half-precision input as
a 16-bit word, right shift by 2 places, then reinterpret
as half.

� plus64: f(x) = x + 64 − 64. This about the sim-
plest function that has obvious rounding error. It
only outputs 25 distinct values in [−1, 1] so its deriva-
tive is degenerate; I use its “mathematical” derivative
f ′(x) = 1.5

� identity: The function f(x) = x. This is an impor-
tant comparison because it shows us what a “true” lin-
ear (both mathematically and computationally) net-
work is capable of.

Flattened models. For the transfer functions that are
mathematically linear, we can also compute the equivalent
linear model. This just consists of a single dense layer, us-
ing the identity transfer function, that computes the linear
function of the input. These appear in the results as “flat”
variants.

MNIST. The first problem is the Modified National In-
stitute of Standards and Technology handwriting dataset
(MNIST). This is a standardized dataset of handwritten
digits (0–9) as 28×28 greyscale images. This is chosen
partly for trollish reasons. It dates from 1998, and even
at the time of publication, accuracy with neural networks

5Learning with this function might work better if we instead ap-
proximate the derivative by something non-constant, like by comput-
ing the derivative of a smoothed version. However, due to imple-
mentation tricks in Tom7Flow, we need a derivative that is expressed
in terms of the transfer function’s output (i.e. g(f(x)) = f ′(x)); we
would not be able to express the smoothed derivative because there
are only 25 distinct values of f(x) in the [−1, 1] range!

transfer function flat accuracy
logistic 98.20%

tanh 98.93%
leaky-relu 99.39%

plus64 82.66%
grad1 97.29%

identity 81.96%
downshift2 94.45%

plus64 × 82.01%
grad1 × 39.19%

identity × 81.98%

Figure 4: Results on the standardized MNIST data set.
Accuracy is the fraction of results from the held-out test
data for which the highest-scoring class (digit) is the correct
class.

(98.4%) and other techniques (99.2%) were already ex-
tremely high [15].

For this problem, I augmented the dataset by randomly
offsetting the training images by up to two pixels in any di-
rection, and by adding Gaussian noise. The model’s input
layer is just the 28 × 28 greyscale values, and the output
is a prediction for each of the ten digits. The models had
two convolutional layers (64 3×3 features, fully overlapping
+ 128 8×8 features, fully overlapping; then 32 128×128
features + 32 256×2 features with no overlap), then two
sparse layers of 1024 nodes each, then a final dense output
layer. The same initial weights and connectivity was used
for each experiment. Internal layers use the transfer func-
tion being evaluated, but the output layer always used the
identity transfer function. This is not a good choice for this
problem (softmax makes more sense since the output is cat-
egorical) but I wanted the linear models to be truly linear.
Using the same transfer function would have also disadvan-
taged functions with limited output range; downshift2 for
example can technically output 1.0, but only for very large
inputs (8192.0). The final identity layer can easily scale the
useful range of the transfer function to the nominal range of
the output. (This is essential for the chess problem below,
where the output instead ranges [−1, 1].)
See the source code for various hyperparameter settings

(although if you are trying to learn good settings for hy-
perparameters, my code is not the place to look). I used
the ADAM weight update trick [12], which does give me
much better results than plain SGD in my experiments.

Results for MNIST are in Figure 4. A nice bug appears
in Figure 5.

CIFAR-10. Another classic dataset comes from the
Canadian Institute For Advanced Research. They capi-
talize “For” so that the acronym can be pronounced nicely.
I mean to be fair MNIOSAT would have a certain ring to
it too. This dataset contains 60,000 RGB images of size
32 × 32, that are labeled into 10 different spirit animals:
Airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships,
and trucks [14]. It is very similar to the handwriting prob-



Figure 5: Bug.

transfer function flat accuracy
logistic 56.83%

tanh 67.82%
leaky-relu 73.11%

plus64 43.60%
grad1 53.56%

identity 41.07%
downshift2 46.54%

plus64 × 32.76%
grad1 × 30.58%

identity × 41.04%

Figure 6: Results on the standardized CIFAR10 data set.
As with MNIST, accuracy is the fraction of results from
the held-out test data for whom the highest-scoring class is
the correct class.

lem but more challenging (state of the art accuracy is more
like 96.5%). You would struggle sometimes to figure out
what these tiny thumbnails are, to be honest. Like with
MNIST, I augmented the training set by randomly shifting
the images and adding Gaussian noise. The network struc-
ture is the same as in the MNIST problem, except that in
the first convolutional layer, each window is three times as
wide to account for the three color channels.

Results for CIFAR-10 appear in Figure 6. One of the
nice things about using standard problems is that we can
understand how the results stack up against other re-
searchers. Consulting a leaderboard of public results [4]
I see that the worst publicly known accuracy for CIFAR-10
is 75.86% [21]. The best result for the current work, using
the sensible Leaky Relu transfer function, is 73.11%. So
this is. . . last place. That’s actually pretty good; last place
is the last winner (or the first winner, when counting from
the end). Not to mention that we can get into even laster
place by using the other exotic transfer functions. Even
putting aside their aesthetic appeal, I feel that these infe-
rior transfer functions are an important contribution to the
field, as it seems to me that AI is getting too good, and too
fast! Let’s take it easy there, guys!

Chess. This problem attempts to learn a good evalua-
tion function for chess boards. Training examples are real
chess positions (from the Lichess database) evaluated by
a strong chess engine (Stockfish [30]). Stockfish generates
two classes of scores: “Mate in N” if one side is known to
have a series of N moves that wins (but “Mate in 1” is
still better than “Mate in 4”), or a more subjective score,
measured in pawns. (The score in pawns can seemingly
be higher than 64, which is kind of funny because how
are the pawns gonna fit on a 64-square board? DUAL-
WIELD? 6) Mate is of course categorically better than
the pawn score, as it is exact. Anyway, I squash this score
into the range [−1, 1] and that becomes the training in-
stance. This network’s first layer has 256 3×3 convolutional
features, overlapping, as well as 32 1×1 and 128 8×1 and
1×8. Each of these is measured in terms of squares on the
board, but each square actually corresponds to 13 inputs,
for the 13 possible things that can be in that square (ex-
actly one set to 1.0). We also have some non-square inputs,
like the castling privileges and en passant state. So it’s not
just the convolutional features but some sparse nodes too.
And then we have some more layers (you can check out the
source code if you really care about these details, which I
doubt!) and then a final dense layer with a single output
using the identity transfer function as before. No training

6

8rZrZrZ0j
7o0o0o0o0
6PoPoPoPo
5ZPZPZPZP
4BSBSBSBS
3SBSBSBSB
2BSBSBSBS
1J0SBSBSQ

a b c d e f g h

Here’s an idea for a SIGBOVIK
paper: What’s the highest scoring
chess position, according to Stock-
fish, for which it cannot deduce
mate? One logistical challenge is
that it seems to top out at +99,
such as on this position (still no
mate at depth 89).



data augmentation here (we have a basically limitless sup-
ply of positions to train on), but I do normalize the board
so that it is always white to move.

For chess we can compute the accuracy, comparing to
Stockfish as ground truth (Figure 7). We can also use the
evaluation function to play chess. These chess “engines”
just look at the possible legal moves and take the move that
is most favorable, using the learned evaluation function
(no game tree search). Playing against the best of these
(“leaky”) it subjectively makes decent moves most of the
time and can even beat me playing casually. I noticed that
it had a lot of trouble “sealing the deal” in totally winning
positions (which is not unusual for engines that don’t do
game-tree search or use endgame tables), but the problem
was actually more shallow: Due to a bug7 in the way train-
ing examples are gathered, the models were never exposed
to checkmate or stalemate positions! Since training takes
several days per function and the iron-fistedly punctilious
SIGBOVIK deadlines were imminent, there simply wasn’t
enough time to retrain them with access to these positions.
However, since mate is a mechanical fact of the game (like
what moves are legal) it seemed reasonable to fix this in
the engine itself: When considering all the legal moves to
make, it infinitely prefers a move that results in checkmate,
and considers a move resulting in stalemate to have score
0.0, and otherwise uses the evaluation function. These “fix”
versions of each engine perform very significantly better, al-
though they likely overestimate the performance we’d get
by actually fixing the model; there’s no guarantee that it
would be able to accurately recognize mate, and the fixed
versions’ greedy strategy of taking mate in 1 is always ad-
vantageous.

These players compete against each other as well as the
engines from the Elo World project [26], giving a sense of
their strength in an absolute scale (Figure 8). The raw
versions perform reasonably; they all work better than a
simple engine like “take the move that minimizes the num-
ber of moves the opponent will have,” (min_oppt_moves).
The fixed versions are much better, as expected. The “lin-
ear” engine using the grad1 transfer function, is competi-
tive with the NES Chessmaster engine, and outperforms a
50% dilution of Stockfish. This is pretty solid given that it
is doing no explicit game tree search. In fact (aside from
the wrapper implementing the rules of chess and finding
the maximum eval score), it is only performing a fixed ex-
pression of floating point addition and scaling! We could
make this even more ideologically pure using techniques
from Section 7.3.

What transfer function is best? The results on each
of these problems are similar: The “leaky rectified” trans-

7I used the annotations like [%eval #12] that appear on moves
for many games in the Lichess database. I didn’t notice that they
do not appear on a game-ending move like Qh4#! This does sort of
make sense because the eval scores would have to be [%eval #+0]

(“mate in 0”) or [%eval #-0] (necessitating use of the floating point
coprocessor) to express the winner, and there does not seem to be a
natural way to express the definite value of stalemate.

transfer function flat loss accuracy
logistic 0.168 72.046%

tanh 0.117 78.527%
leaky-relu 0.118 78.172%

plus64 0.162 75.406%
grad1 0.111 78.924%

identity 0.161 75.975%
downshift2 0.211 68.066%

plus64 × 0.161 75.779%
grad1 × 0.527 58.187%

identity × 0.161 75.975%

Figure 7: Results of learning Stockfish’s position evaluation
function. Stockfish scores are normalized to a [−1, 1] scale,
and loss here is the average (L1) distance between the pre-
dicted score and actual Stockfish score, on some 100,000
positions from games not in the training set. Accuracy is
the percentage of predictions whose sign agreed with Stock-
fish (e.g. they both agree the white player is winning).

Figure 8: Results of a chess tournament. Players include
ones based on the learned position evaluation with different
transfer functions; these players simply take the move that
results in the most favorable eval (no game tree search).
They compete with some standardized players from the
Elo World project [26]. Rows represent the player as white,
columns as black. A green cell means that White generally
wins; blue a draw; red a loss. An × in a cell means that this
outcome occurred in every game. The left column is the re-
sulting Elo rating [6]. The best model leaky fix performs
decently well, similar to NES Chessmaster or a Stockfish
diluted to about 60% strength with random moves (both of
these engines perform game tree search). The centerpiece
of the paper is the “linear” grad1 transfer function; here its
learned chess player slightly outperforms Stockfish diluted
to 50% strength with random moves.



fer function is generally best or close to best. The identity
transfer function, which yields a simple linear model, is gen-
erally worst or close to worst. The sigmoid functions are all
over the place. It is known that they are prone to vanishing
gradients in deep networks, and I may simply have unfavor-
able hyperparameter settings for them. The experimental
downshift2 function is generally bad, perhaps because its
output is strictly positive or it has such a small dynamic
range. Its shape also seems prone to the vanishing gradient
problem. The small amount of nonlinearity introduced by
plus64 does appear to give it a small edge over the iden-
tity, but its lack of an interesting derivative and the fact
that it only produces a small number of output values are
limiting. Importantly, the grad1 function—the centerpiece
of the first third of this paper—performs decently on all
problems. It clearly outperforms the linear models, despite
being “linear.”

It is also interesting to compare the flattened versions
of the linear transfer functions. These are the computed
(mathematically) equivalent single-layer linear models. For
plus64 the flattened version is worse in all cases; the unflat-
tened model is taking advantage of the discretization in
some way. For grad1 it is dramatically worse, both be-
cause grad1 models are substantially using the roundoff er-
ror and because the mathematical version of this function
(f(x) = x × 1.036535) is not even a good linear approx-
imation of the actual result (e.g. grad1(1) = 1). Finally,
the result for the identity transfer function should be math-
ematically equivalent, but it does not always produce the
same results. This is unsurprising since we know that float-
ing point calculations are not perfectly accurate, but it does
hint that deep networks may make use of floating point
roundoff internally, even if they are not using silly transfer
functions!

Having proved the professor wrong, we could stop there,
but did huge mathematical breakthroughs ever arise from
taking the option to stop there ?!

5 Non-monotonic functions

Because of the way that addition and scaling are defined
(do the real mathematical operation, then round), they pre-
serve monotonicity: If x ≥ y, then f(x) ≥ f(y). But this is
only true if we limit the form of the function to a series of
additions of constants and (non-negative) scaling. There
are other expressions that are mathematically linear but
don’t take that form; for example:

f(x) = x− 4096− x+ 4096

This is of course mathematically equivalent to f(x) = 0.0,
but with half precision it is a square wave function (here
pictured [-8, 8]):

For some values of x the terms cancel out, and for others
the rounding error compounds. This function is not as well-
behaved as it appears; the first pulse has width 0.99609375
and the second has width 1.

Here is f(x) = grad1(x)− x, which is also linear:

Generally speaking, we can create a large variety of func-
tions by computing the interference patterns between other
functions, since the sum or difference of two “linear” func-
tions is also “linear.” In general we’ll consider expressions
of this form:

E ::= x
| E × c

| E + c

| E + E

Where x is the function variable, and c is one of the 63,488
finite half-precision constants. We can derive negation
(E × −1) and subtraction of constants (E + −c) and ex-
pressions (E + (E ×−1)) since every number has an exact
negation by flipping its sign bit. Exact division is possible
when 1/c is representable, and there is almost always a close
approximation.

This formulation leads to a tempting approach for ap-
proximating a function iteratively, like a Taylor series.
Given a target function like sin(x), we can begin with an
approximate expression for it, like x, and then add and sub-
tract terms to improve the approximation. I don’t know of
any systematic way to improve the approximation at each
step (they are not well-behaved mathematically, and I am
not good at math), but by using computer search I can
sure make some complicated functions with many different
shapes.

An approximation of sin appears in Figure 9. It is fun to
watch an animation of the successively improving approx-
imations, but you can’t see that since you’re reading an
old-fashioned paper. Perhaps you can find a video of this
at tom7.org/grad.

5.1 Fractals

Next, I endeavored to deploy these functions for something
useful: Fractals. Famously, fractals are simple functions
with complex (often literally) behavior. For example, the
Mandelbrot set considers each complex point c (plotted on
the plane as x + yi) and computes whether zi = z2i−1 + c
diverges or not. It’s lovely, but squaring is not linear!



Figure 9: Successive approximations of the sin function, as
color interpolates from green to blue.

What if we just create a linear function that approxi-
mates f(x) = x2? This is definitely possible, using the ap-
proach described above. After 184 successful error-reducing
rounds we get the following approximation, with 112,204
linear operations:

Aside from the funny business near the origin, this is
a fairly accurate approximation of the square function, so
you might hope that it would draw a perverted Mandel-
brot set. Unfortunately, it produces a much sadder blotch
(Figure 10). To see why, consider the normal definition of
squaring for a complex number:

(a+ bi)2 = a2 + 2abi + b2i2

= a2 + 2abi− b2

Note that the real coefficient a ends up part of the imag-
inary coefficient 2ab in the result, and the imaginary co-
efficient b becomes part of the real part (because i2 is
real). This means that squaring a complex number cross-
pollinates between the two components, yielding a kind of
wacky rotation if we think of them as 2D coordinates.

Figure 10: A garbage “fractal” that results from trying
to approximate squaring of complex numbers using linear
complex operations. Alas, it cannot be done. The complex
numbers are truly special.

But here, squaring is approximated as a series of opera-
tions of the form w1 +w2 and w× c for constants c. These
operations on complex numbers are less interesting:

(a1 + b1i) + (a2 + b2i) = (a1 + a2) + (b1 + b2)i

(a+ bi)× c = ac+ bci

Alas, these operations are boring; the real parts always
stay real and the imaginary parts always stay imaginary.
This is why the crummy blotch has all sorts of vertical and
horizontal lines in it: As we iterate the function we are
iterating two independent components, and the resulting
picture is just some interference pattern between them.

This seems pretty definitive. Even if we had some kind of
hardware implementation of complex numbers with round-
ing error to abuse, there would be no reason to have the
linear operations do any cross-pollinated rounding. Pro-
fessors take note: The complex numbers do provide some
refuge!

Still, a lot of chaos can emerge from these functions that
should not be possible with “linear” ones. For example,
here is a complicated function made by stringing 36,637
addition and scaling operations together:



Iterating this function produces chaotic results because
of its nonmonotonicity. In Figure 11 I plot (using color)
the magnitude of z after 256 iterations of

zi = f(zi−1)× c

This is mathematically linear (as c is a constant and f
a linear function). Nonetheless, it produces an appealing
picture. I think this is a fractal in the sense that it is
chaotic, has a color gradient, and could be on the cover of
an electronic music album. It is not a fractal in the sense
that if you zoom in on it, you get infinite detail of self-
similar shapes. In fact, if you zoom in on it only a modest
amount, you encounter rectangular pixels as you reach the
limits of half-precision floating point. (And because this
fractal is built by abusing those very limits, it is not even
possible to get more detail by increasing the accuracy!)

5.2 Bonus digression: Baffling numbers

Imagine you are my professor. You assign a class project
to “make fractals using floating point roundoff error,” for
some reason. You spot me in the computer lab and I’m
obviously way off track, because on-screen is some kind of
3D fractal. The Mandelbrot set cannot be extended to
three dimensions, you say, because of the Frobenius theo-
rem: Only algebras of dimension 1 (real numbers), 2 (com-
plex numbers) and 4 (quaternions) work [8]. Unclear how
the professor speaks the citation aloud in this scenario. I
say I “know” this fact, but I “don’t care.” You say that
my three-dimensional algebra can’t be associative, because
that’s “just a mathematical fact.” I say you know what else
isn’t associative? The floating point numbers, my dude.
Enter the baffling numbers, ill-advised extensions of

the complex numbers to three dimensions. Here we have
numbers of the form a+ bi + cj. Addition is just pointwise,
and there are several options to complete the story for mul-
tiplication, namely the values of the cells A, B, and C in
this table:

× 1 i j
1 1 i j
i i −1 U
j j V W

Figure 11: A fractal made from iterating a “linear” function
f . The color is the magnitude of z256 with zi = f(zi−1)×c.
c is the complex coordinate x+ yi, a constant.

The cells U , V , and W are baffling numbers (i.e. each
some a + bi + cj). Some choices are degenerate, but this
gives us a family of options. It is known that no matter
the choices, this does “not work” (in the sense that the
resulting algebra is not associative8) but we don’t need as-
sociativity to draw fractals. Plus, who’s gonna stop me,
FROBENIUS??

I tried a few options, but thought that U = i, V = j
and W = 1 produced satisfyingly trippy results. The Man-
delbrot is straightforwardly generalized to the “Bafflebrot”
(the starting point c is just a baffling number now; ev-
erything else is the same). I generated a 3D object by
defining an implicit surface based on whether a sampled
point is still inside the set after 25 iterations, using March-
ing Cubes [17] to discretize it. The resulting mesh is 2
gigabytes and crashes every library that attempts to pro-
grammatically simplify it. I do admire and encourage its
defiant spirit. A rendering appears in Figure 12.

Drawing fractals is fun and everything, but I grew weary
of the exercise because there is no real goal other than to
make a cool picture. Instead I turned to something with a
clearer challenge to overcome: Linear Cryptography.

6 Linear cryptography

Cryptography is like fractals minus drugs. One of the most
basic components of cryptography is a pseudorandom num-

8Or else is equivalent to the complex numbers.



Figure 12: The 3D “bafflebrot” sliced in half and projected
to 2D. This fractal was created with the “illegal” number
system called the baffling numbers. They’re like the com-
plex numbers but more so. The object is truncated along
its j axis, showing a perfect ripe Mandelbrot inside.

ber generator. This kind of function takes some state and
produces a new state that “looks random.” Given a pseudo-
random number generator, we can construct one-way func-
tions (“hash functions”) and from those we can make sym-
metric ciphers (using, say, a Feistel network), with which
we can encrypt and decrypt data.

Another thing that professors will tell you about cryp-
tography is that good cryptographic functions cannot be
linear. In this context, linear includes in a finite ring like
Z256 or (especially) Z2, i.e. bits.

9 One good reason for this
is that even if the function is a little bit linear then linear
cryptanalysis can be used to recover bits of the key with
a lot of example data [19]. Standard advice is to alter-
nate both linear (e.g. XOR, or multiplication mod 2n) and
non-linear (e.g. substitution) operations. (“[Substitutions]
are generally the only nonlinear step in an algorithm; they
are what give a block cipher its security.”10) Of course
we will prove this adage wrong by developing a good pseu-
dorandom function that uses only “linear” operations on
half-precision floating point numbers.

In terms of goals, pseudorandom number generation has
a more clear objective than fractals, although it’s not so
easy to pin down formally. We don’t even know if such
functions exist, mathematically [10], although there are
generators that are provably secure assuming some other
problems are actually hard [5] (but these problems are only
believed to be hard). There exist many functions that look
like good pseudorandom generators, but that actually have
back doors that make them easy to predict. (Iteration of

9So XOR is considered linear here, even though we previously ob-
served that there is no linear function on real numbers that fits it!

10Applied Cryptography, Second Edition, page 349 [31].

Figure 13: The substitution-permutation network that
forms a half decent pseudorandom number generator. The
same substitution (“s-box”) is applied to each byte. Then
the 64 bits are permuted. Finally, bytes are combined with
modular addition and subtraction. This function passes
the “Big Crush” suite and can be implemented with only
half-precision floating point addition and scaling.

a symmetric encryption algorithm like AES, with the key
hidden, has this property.)11 Practically speaking, though,
we can subject the function to a wide variety of statistical
tests, and if it looks random to every test, then this gives
us good confidence.12

Specifically, my goal is to design an algorithm that takes
64 bits of data (represented as half-precision floats) to an-
other 64 bits, such that the stream of low-order bits from
iterating this function passes the TestU01’s “Big Crush”
suite of 106 statistical tests [16]. This suite is a succes-
sor to Marsaglia’s “DieHard” battery of tests [18], itself an
improvement on Knuth’s tests from The Art Of Computer
Programming [13].

The basis of this function is the classic substitution-

11And let us never forget that RSA DSI (yes, that RSA) actually
did take a $10 million bribe from the NSA to put a backdoor in one
of their pseudorandom number generators [22]!

12Truly good cryptographic algorithms are also openly studied by
experts. Of course nothing in here is to be used seriously, and not
just because these algorithms are ridiculously slow. But I guess if
you are stuck on a desert island with only the floating point addition
and scaling operations, and a copy of this paper, then it would be a
reasonable starting point for encrypting your messages. I do not rec-
ommend, if stranded on a desert island, to send encrypted messages:
They may not be readable to your potential rescuers!



permutation network. First, each of the eight bytes are
substituted with a different byte using a table (this is the
mathematically non-linear step). Then, the 64 bits are per-
muted. Finally, some of the bytes are modified additively.
An illustration appears in Figure 13.

The substitution table (“s-boxes”) was generated by
computer search with an objective to maximize the
“avalanche property” (when a bit of the input is comple-
mented, about half of the output bits should be comple-
mented). The permutation was generated to maximize dis-
persion; each quartet sends each bit to a distinct quartet
in the output. This is not the important part. We could
have just used known good tables.

To implement this with half-precision floating point, we
could represent each bit with its own half, but that is
no fun. The state will be represented with eight half-
precision floats, each representing one byte’s worth of in-
formation. Since we have been fixated on the [−1, 1] in-
terval so far, a byte will be stored as any value in [−1, 1),
with each 1/128 interval representing one of the 256 val-
ues (0 is anything in [−1,−0.9921875), 1 is anything in
[−0.9921875,−0.984375), and so on). This means that it-
erating the function on any starting value in the [−1, 1)
interval will produce pseudorandom results. So for exam-
ple we can guarantee that a “fractal” plotted using this
function will look “fully messed up” and not just have a
few distinguished points of randomness. I’ll say now that
this is unnecessarily hard; in the next section of this pa-
per we’ll see a vastly more efficient approach for handling
discrete data. But working on the entire domain makes for
some challenging problems and shows that we’ve developed
substantial mastery of the continuous case.

Speaking of which, my first approach was to try to ap-
proximate the substitution function (since it replaces one
8-bit byte with another, it corresponds to a single discon-
tinuous function of type half → half) using the iterative
approach described in Section 5.1. Although it is possible
to get reasonable approximations with this method (most
values are transformed to a value near the desired one),
this will not suffice; when iterating the function we find
that the value easily gets stuck in short cycles due to this
inaccuracy.

I found a better approach, by creating a composable fam-
ily of functions that isolate specific intervals of interest. For
example,

Within the interval [−1, 1), this function takes on exactly

two values: zero13 and 1/128. It returns
1/128 only for exactly

the interval [121/128,
122/128). This is the interval that repre-

sents the number 249 (128 + 121; remember that the first
128 integers are in [−1, 0)). The expression that computes
this is

f(x) =
(x− 9

64 − 1
4 × −1

512 − 1255
512 ×164 1027

1024 )+

(x− 1
4 × −1

512 − 597
512 ×188 1277

2048 × −1)+

517
128 × − 32

+

 (x− 17
128 − 1

4 × −1
512 − 1255

512 ×164 1027
1024 )+

(x− 1
4 × −1

512 − 597
512 ×188 1277

2048 × −1)+

517
128 × 32

× −1
32

where E×n c means E×c×c×c . . . for n iterations. Math-
ematically this is equivalent to this constant function (all
xs cancel out):

f(x) =
13164 × 79164

21656

I spent a long time writing code to simplify these expres-
sions and generate LATEX for them, by the way! As usual,
I thought it would look cool when I got it working, but it
just looks like a bunch of numbers.

We can think of this function as a basis vector, represent-
ing the 256-dimension vector ⟨0, 0, 0, . . . , 0, 1, 0, 0, 0, 0, 0, 0⟩.
We’ll call this one b249 since it selects the integer 249. If
we can find bn for each n ∈ Z256, then we will be able to
combine them to systematically construct functions.

The one just pictured is one of the smallest expressions;
most are much larger. I wish I could tell you that I fig-
ured out the principles underlying how to analytically gen-
erate these functions, but I discovered them with computer
search and some elbow grease.

Choppy functions. I call a function f “choppy” if for
every half precision floating point value in [−1, 1) it has the
following properties:

� For n ∈ Z256 and r ∈ [0, 1), f(−1+n+r/128) = v for the
same value v. We only need to consider cases where
n+ r is representable as a half.

� v is itself of the form n−128/128 for some n ∈ Z256.

� For these purposes, we treat the single value −0 as
being equal to 0.

� And, as usual, the function is built only with floating
point addition and scaling by constants.

That is, the function produces the same result for any
representation of an integer, and that result is the smallest
representation of an integer. These functions are maxi-
mally useful in that they are “liberal in what they accept,”

13Actually, −0!



but “conservative in what they return” [28]. It also means
that each function also can be understood as a function
Z256 → Z256, so we can represent them as a vector of 256
integers. The basis vectors bn are those that are of the
form ⟨0, . . . , 1, . . . , 0⟩.
I then conducted computer search for choppy functions,

putting those into a database (keyed by the corresponding
integer vector). Some are easy to find, others harder. Sum-
ming and scaling choppy functions yield choppy functions
(as long as the vectors remain integral and in range), so
I use a simplified version of Gauss-Jordan elimination [32]
to solve for basis vectors. Once I have bn, this column
can be changed at will for any existing choppy function (by
just adding or subtracting multiples of bn), so new choppy
functions that only vary in that column can be ignored.
By trying a variety of operations that are known to be

useful (e.g. iterated multiplication of constants near 1.0)
and hill-climbing towards functions with the choppy prop-
erty, it is not too hard to find bn for most n. It seems to
become more challenging for n near 128; this is the point
0.0 in half-precision. Specifically, the hardest problem was
to make a function that produced different results for in-
puts < 0.0 versus inputs ≥ 0.0. This is the zero-threshold
problem.

Why is this hard? Distinguishing between negative and
non-negative numbers is deceptively difficult. Looking back
to the function f(x) = x+128.0− 128.0 (Section 4), it has
useful discontinuous steps, but note that the discontinuity
does not happen at zero. This is because we are rounding
to the nearest value, and so small negative numbers near
zero end up rounding to the same result that zero does.
Moreover, the resolution of the floating point numbers is
highest near zero (especially because of subnormal num-
bers), which exacerbates our attempts to control rounding
of them. For example, you might think that we could sim-
ply shift this function left and right by substituting x + c
for x in its body. This would work mathematically, but
it does not work for floating point numbers, because each
operation performs some rounding. If this rounding ever
ends up conflating a negative number with a non-negative
one, we will not be able to recover.
I found a zero-threshold function using a combination of

manual and computer search. This was some ordeal, and
the resulting enormous function is in Figure 14. Perhaps
you are smarter than me and can find a better one!

Substituting and permuting. In any case, with this
function it was possible to form a complete basis. This
basis makes it “easy” to perform operations on half values
that represent bytes. For example, the s-box step substi-
tutes some distinct byte for each different input byte. This
would normally be implemented with a table lookup. If
we compute bn(x)× subst[n], this returns the correct14 re-
sult subst[n] if the input x = n, and 0 otherwise. So if we
just sum all 256 of these up, exactly one of them will be

14Technically we need to do some multiplicative adjustments to put
the value in [−1, 1).

nonzero, and the correct substituted value.

Permutation is defined on the component bits. Here, we
compose a function that computes each of the eight output
bytes. We use the same approach of summing a bunch of
bn(x) evaluations (each multiplied by the correct answer).
Here we are testing whether the input has some particular
bit set (a sum of the 128 bn(x) functions where n has that
bit set), and the output is the power of two that sets the
appropriate output bit. Many of these functions would have
simpler implementations (for example, “is the high-order
bit set?” is the same as the zero-threshold function) but at
this point I was happy to just have something working, and
taking some joy in how absurdly large the functions were
getting.

The cipher also includes addition and subtraction mod
256. Addition and subtraction are already available for
half-precision floats, and they have faithful behavior, so we
just need to implement the wrapping-around behavior so
that the result is strictly in [−1, 1]. This is straightforward
with the zero threshold function;15 we produce corrective
factors if the result is ≥ 1 or < −1 (zeros otherwise). We
then add those corrective factors produce the remainder we
desire.

6.1 Benchmark results

To evaluate the quality of the pseudorandom number gen-
erator, I used the TestU01 “Big Crush” suite. This test
needs a sample of 1.64 billion bits, so I actually evaluated
it on equivalent code that performs the steps using normal
integer operations. Even then, the suite takes several days
to run, so I modified it to run tests in parallel and cache
the results of completed tests. This saved me from losing
data if my computer crashed or needed to be rebooted.

Results appear in Figure 15. Passing these tests does not
ensure that the pseudorandom number generator is good
for cryptography, although it is a good start.

Running single-threaded on a 3.0 GHz Threadripper
2990WX, this function generates 25.8 bytes of randomness
per second, which is slow. By precomputing the substitu-
tion, permutation, and zero threshold expressions (so they
can be performed by lookup into 64k-entry tables), it gen-
erates 18,685.2 bytes per second, which is still slow.

If we were building an encryption algorithm (a symmetric
block cipher), it would be natural to use this as its “round
function.” In a Feistel network [7], each input block (128
bits) is broken into two halves; one of them is mixed with
some key bits (for example with XOR) and then passed to
this function. Its output is XORed with the other half; the
two halves are swapped, and this “round” is repeated many
times until we believe that the data are suitably screwed
up. Decryption is the reverse. We can use addition and
subtraction mod 28 to combine the data instead of XOR

15Compare to the remarks “why is this hard?” above. Here, zt(x−
1) does do what you’d want, shifting the threshold value from 0 to 1.
This is because there is less precision near one than near zero.



zt(x) = x+ 1
224 ×9743 1025

1024 × 39
219 + 1279

16384 × 4100 + 318× 4 + 1×559 1025
1024 × 1027

2048 ×1160 1025
1024 × 545

2048 ×23 1025
1024 × 311

512 ×137 1025
1024 ×

527
2048 ×365 1025

1024 × 627
1024 ×346 1025

1024 × 593
1024 ×676 1025

1024 × 281
512 ×557 1025

1024 × 129
256 ×830 1025

1024 × 589
4096 ×336 1025

1024 × 1029
2048 ×663 1025

1024 × 1041
218 −

2206 + 2206× 9
256 + 1076 + 2534− 2074× 17

64 − 2048 + 2048× 1
8

=
593×2187×530793×343×11×169×289×361×961×4115396×43×79×109×281×311×347

2154102 x+
84107227537103367748705454682078539303191039250504832410385579895977259206417678
54245560547677512932803511681703341508665266147325419821191498222214690318490003
88110778422408950986678118366271064412982414738166383752334216371785576710459496
25738831829937485787963475192987844674323695457715738688221958462470493961327089
64862528034085403084792949523917534005532171250047637347672007635216035917044700
. . . 569 lines . . .
73014930689000221762919045089322540125964944324282583780813532524840229888776299
45268638388603643723804098205965854510116202420980541689175292145265852612920173
68725838005728517370192463512280524432138902703991548800398876262333592383735651
92764023532792804235216160403774463302046032255421688296905932246680375562746379
76285400623707503241570527062342946483273904883074176883724035214883942317941586
85212883934224294828781615577153021816836375301250331354703790141535016001286984
69246587905140878604602957637178398679300714629238352320436905873649993209× 3× 17× 421

2154126

Figure 14: A zero-threshold function. Returns 1/128 for values in [0, 1) (and −0) and 0 for values in [−1, 0). Top is the
series of additions and scalings to perform, all from left to right. At bottom is the equivalent mathematical expression,
but the enormous numerator cannot be printed due to extremely oppressive SIGBOVIK page limitations.

(which is addition mod 21), so we already have all the oper-
ations we need to build a whole block cipher here. As Bruce
Schneier says,16 “It is easy to design a block cipher.”

7 THE ULTIMATE THROW-
BACK

Having developed a basis for extracting arbitrary bits, we
can express any function of a single variable, and we’ve
seen how some other functions (like addition mod 28) can
be done. At this point, it seems like we probably have
the building blocks to demonstrate that addition and scal-
ing on half-precision floats is Turing complete. I mean,
pretty much everything is Turing complete. In the past,
I built computers that were perfect and beautiful, such as
a hardware implementation of the NaNDY 1000, a com-
puter architecture that computes using only floating point
NaN and Infinity [27]. In a concession to ideological purity,
though, the NaNDY 1000 has no I/O. So it is very boring
to use.

For today’s investigations of the capabilities of floating
point, I’ll make the opposite concession: Let’s make a com-
puter that is exciting to use, but that makes some (reason-
able) ideological concessions so that it can do something
interesting.

16Applied Cryptography, Second Edition, page 351.

7.1 Fluint8

First of all, if we want to do some serious computation, 25.8
bytes per second isn’t going to cut it. To look for perfor-
mance enhancing substances, I perused the back catalog of
the world’s most prestigious conference, SIGBOVIK. There
in the 2018 edition, on page 125, I found an intriguing
paper, The fluint8 Software Integer Library, by Drs. Jim
McCann and . . . Tom Murphy VII? Wait, that’s me? I al-
ready wrote this paper?! [20]

The fluint8 library represents an element of Z256

(a.k.a. uint8) as a 32-bit float, and provides multiplica-
tion, addition, subtraction, negation, division, and bitwise
functions and, or, and exclusive or.

Compared to the approach discussed in Section 6 using
“choppy functions,” fluint8 has much more simple and sen-
sible implementations of functions like addition:

inline float fu8_add(float a, float b) {

float x = a + b;

x -= x - 127.5f + 3221225472.0f - 3221225472.0f;

return x;

}

The x -= x... line applies the corrective factor to im-
plement wrap-around, which we previously did using the
zero-threshold function. Why can it be done so much more
simply here? First, fluint8 represents n ∈ Z256 as n, so
a number like 27 is represented as 27.0 instead of, say,
−1 + 27/128. Second, it requires that the number be rep-
resented exactly as this value. The figures in the fluint8
paper are somewhat misleading as they are plotted only



Test p-value Test p-value Test p-value
SerialOver, r = 0 0.9653 SimpPoker 0 32 0.8052 RandomWalk1 J (L=50, r=25) 0.4576

SerialOver, r = 22 0.7292 SimpPoker 25 32 0.1166 RandomWalk1 R (L=50, r=25) 0.9736
CollisionOver, t = 2 (0) 0.3890 CouponCollector, r = 0 0.3233 RandomWalk1 C (L=50, r=25) 0.6768
CollisionOver, t = 2 (9) 0.6537 CouponCollector, r = 10 0.7936 RandomWalk1 H (L=1000, r=0) 0.9915
CollisionOver, t = 3 (0) 0.8046 CouponCollector, r = 20 0.2870 RandomWalk1 M (L=1000, r=0) 0.8194

CollisionOver, t = 3 (16) 0.9279 CouponCollector, r = 27 0.1878 RandomWalk1 J (L=1000, r=0) 0.7606
CollisionOver, t = 7 (0) 0.2906 Gap 0 16 0.2858 RandomWalk1 R (L=1000, r=0) 0.4983

CollisionOver, t = 7 (24) 0.0031 Gap 25 32 0.6202 RandomWalk1 C (L=1000, r=0) 0.0529
CollisionOver, t = 14 (0) 0.4310 Gap 0 128 0.7462 RandomWalk1 H (L=1000, r=20) 0.3353

CollisionOver, t = 14 (27) 0.5062 Gap 20 1024 0.1068 RandomWalk1 M (L=1000, r=20) 0.2279
CollisionOver, t = 21 (0) 0.1909 Run 0 0.3096 RandomWalk1 J (L=1000, r=20) 0.8593

CollisionOver, t = 21 (28) 0.2906 Run 15 0.5308 RandomWalk1 R (L=1000, r=20) 0.4915
BirthdaySpacings, t = 2 0.4179 Permutation 3 0.7322 RandomWalk1 C (L=1000, r=20) 0.9640

BirthdaySpacings, t = 2 (b) 0.5749 Permutation 5 0.8632 RandomWalk1 H (L=10000, r=0) 0.0713
BirthdaySpacings, t = 3 0.2249 Permutation 7 0.8337 RandomWalk1 M (L=10000, r=0) 0.4753
BirthdaySpacings, t = 4 0.2230 Permutation 10 0.7557 RandomWalk1 J (L=10000, r=0) 0.6421

BirthdaySpacings, t = 4 (14) 0.2230 CPerm 0 0.0512 RandomWalk1 R (L=10000, r=0) 0.0469
BirthdaySpacings, t = 4 (0) 0.2293 CPerm 10 0.0116 RandomWalk1 C (L=10000, r=0) 0.6232

BirthdaySpacings, t = 4 (16) 0.9111 MaxOft, t = 8 0.1909 RandomWalk1 H (L=10000, r=15) 0.5739
BirthdaySpacings, t = 7 (0) 0.8077 MaxOft AD, t = 8 0.6478 RandomWalk1 M (L=10000, r=15) 0.7165
BirthdaySpacings, t = 7 (7) 0.4887 MaxOft, t = 16 0.3601 RandomWalk1 J (L=10000, r=15) 0.6868

BirthdaySpacings, t = 8 (14) 0.5956 MaxOft AD, t = 16 0.7570 RandomWalk1 R (L=10000, r=15) 0.7075
BirthdaySpacings, t = 8 (22) 0.1382 MaxOft, t = 24 0.3625 RandomWalk1 C (L=10000, r=15) 0.2100
BirthdaySpacings, t = 16 (0) 0.5266 MaxOft AD, t = 24 0.7378 LinearComp, r = 0 (Num) 0.7964

BirthdaySpacings, t = 16 (26) 0.6619 MaxOft, t = 32 0.4541 LinearComp, r = 0 (Size) 0.8628
BirthdaySpacings, t = 13 (0) 0.8419 MaxOft AD, t = 32 0.1967 LinearComp, r = 29 (Num) 0.1564
BirthdaySpacings, t = 13 (5) 0.9242 SampleProd, t = 8 0.6129 LinearComp, r = 29 (Size) 0.9696

BirthdaySpacings, t = 13 (10) 0.3125 SampleProd, t = 16 0.7735 LempelZiv, r = 0 0.8373
BirthdaySpacings, t = 13 (15) 0.4234 SampleProd, t = 24 0.0891 LempelZiv, r = 15 0.4632
BirthdaySpacings, t = 13 (20) 0.0172 SampleMean, r = 0 0.1115 Fourier3, r = 0 0.9159
BirthdaySpacings, t = 13 (26) 0.3276 SampleMean, r = 10 0.4571 Fourier3, r = 27 0.8144

ClosePairs NP t=3 0.9584 SampleCorr, k = 1 0.0260 LongestHeadRun (Chi), r = 0 0.1270
ClosePairs mNP t=3 0.6028 SampleCorr, k = 2 0.0146 LongestHeadRun (Disc), r = 0 0.9025

ClosePairs mNP1 t=3 0.3668 AppearanceSpacings, r = 0 0.6741 LongestHeadRun (Chi), r = 27 0.7822
ClosePairs mNP2 t=3 0.8549 AppearanceSpacings, r = 27 0.0951 LongestHeadRun (Disc), r = 27 0.6878

ClosePairs NJumps t=3 0.3739 WeightDistrib, r = 0 (0.25000) 0.3097 PeriodsInStrings, r = 0 0.6300
ClosePairs mNP2S t=3 0.3813 WeightDistrib, r = 20 (0.25000) 0.6266 PeriodsInStrings, r = 20 0.0839

ClosePairs NP t=5 0.2328 WeightDistrib, r = 28 (0.25000) 0.4372 HammingWeight2, r = 0 0.1331
ClosePairs mNP t=5 0.4011 WeightDistrib, r = 0 (0.06250) 0.6148 HammingWeight2, r = 27 0.0322

ClosePairs mNP1 t=5 0.6286 WeightDistrib, r = 10 (0.06250) 0.6600 HammingCorr, L = 30 0.5516
ClosePairs mNP2 t=5 0.7635 WeightDistrib, r = 26 (0.06250) 0.6532 HammingCorr, L = 300 0.7373

ClosePairs NJumps t=5 0.7981 SumCollector 0.6092 HammingCorr, L = 1200 0.9393
ClosePairs mNP2S t=5 0.4369 MatrixRank, L=30, r=0 0.4367 HammingIndep, L=30, r=0 0.1326

ClosePairs NP t=9 0.3073 MatrixRank, L=30, r=25 0.3045 HammingIndep, L=30, r=27 0.7257
ClosePairs mNP t=9 0.7986 MatrixRank, L=1000, r=0 0.0841 HammingIndep, L=300, r=0 0.4177

ClosePairs mNP1 t=9 0.1934 MatrixRank, L=1000, r=26 0.0145 HammingIndep, L=300, r=26 0.7630
ClosePairs mNP2 t=9 0.5857 MatrixRank, L=5000, r=15 0.2650 HammingIndep, L=1200, r=0 0.4981

ClosePairs NJumps t=9 0.9882 MatrixRank, L=5000, r=0 0.9631 HammingIndep, L=1200, r=25 0.3571
ClosePairs mNP2S t=9 0.0962 Savir2 0.7317 Run of bits (runs), r = 0 0.0241

ClosePairs NP t=16 0.3787 GCD 0.7578 Run of bits (bits), r = 0 0.5718
ClosePairs mNP t=16 0.1983 RandomWalk1 H (L=50, r=0) 0.6779 Run of bits (runs), r = 27 0.0822

ClosePairs mNP1 t=16 0.0511 RandomWalk1 M (L=50, r=0) 0.9338 Run of bits (bits), r = 27 0.7981
ClosePairs mNP2 t=16 0.2874 RandomWalk1 J (L=50, r=0) 0.3168 AutoCorr 1 0 0.3058

ClosePairs NJumps t=16 0.9369 RandomWalk1 R (L=50, r=0) 0.4753 AutoCorr 3 0 0.0371
ClosePairs mNP2S t=16 0.7523 RandomWalk1 C (L=50, r=0) 0.4941 AutoCorr 1 27 0.3292

SimpPoker 0 8 0.9863 RandomWalk1 H (L=50, r=25) 0.8645 AutoCorr 3 27 0.0612
SimpPoker 27 8 0.4528 RandomWalk1 M (L=50, r=25) 0.6220

Figure 15: Results of the TestU01 “Big Crush” suite on the pseudorandom number generator built from floating point
roundoff error. A p-value of < 0.001 or > 0.999 is considered suspect by the suite, so all tests pass here.



for input values that are already exact integers; if we test
fu8_add on values like 100.1875 and 11.0703125 we do not
get 111 (Figure 16). On the other hand, this is a very
reasonable choice to make; we can simply have a represen-
tation invariant that only one of these 256 values is used,
and preserve that invariant with every operation. It won’t
work great for the continuous domain (e.g. plotting frac-
tals) but is a much more practical choice for discrete data
(e.g. encryption). Since I like to work at the intersection of
Theory, Impractice, and Practice, this is appealing!

But: The library uses several operations that are not lin-
ear! In particular, its implementation of bitwise functions
like XOR perform squaring and multiplication of the two
arguments. It was not a design goal of fluint8 to use only
addition and scaling, but it is a design goal today, so we
must address that.

7.2 hfluint8

The use of nonlinear operations is a problem we will rectify,
forthwith, but the other ideas are suitable for building a
computer. In the hfluint8 (for half float linear unsigned int
8-bit) library, a hfluint8 will be represented by a single
half-precision floating point number, and always one of the
exact integral values in [0, 256).17

struct hfluint8 {

half h;

// ...

};

Let’s begin with one helper function:18

half RightShiftHalf8(half xh) {

half SCALE = GetHalf (0x1c00 ); // 1/256

half OFFSET1 = GetHalf (0 xb7f6);

half OFFSET2 = GetHalf (0 x66b0);

return xh * SCALE + OFFSET1 + OFFSET2 - OFFSET2;

}

If the function is given an integral half xh in [0, 512), it
returns xh >> 8. This value is always 1 or 0. The calls to
GetHalf interpret a 16-bit constant as a half, which is use-
ful to be precise (many decimal expressions like 0.1 are not
exactly representable in floating point). I also found that
if you use literals like 0.00390625_h, the code runs much
much more slowly because it inhibits some optimizations or
perhaps the user-defined literals are parsed at runtime (?!).
Aside from wanting to avoid operations like parsing that
might not be addition and scaling on halfs, we will struggle
with performance of these functions as we use them for real

17In fact, all integers from -2048 to 2048 are available, so we could
consider implementing signed 11-bit numbers in a future hflsint11
library.

18These code samples have been simplified to fit the extremely
capricious SIGBOVIK column width requirements. For example,
GetHalf is a constexpr function, so these constants are really declared
as static constexpr and computed completely at compile time. See
the full code and verify that it complies with the rules at https:

//sourceforge.net/p/tom7misc/svn/HEAD/tree/trunk/grad/.

Figure 16: Top: Error of the fluint8 addition function on
general floating point values in [0, 256). This is a de-
tailed zoom of the region x ∈ [252, 256) and y ∈ [0, 4),
but the rest of the image is almost identical. Each pixel
compares the fluint8 sum of x and y to the expected value
(⌊x⌋ + ⌊y⌋mod 256). The top-left pixel in each cell is the
case where x and y are integers; we get the correct re-
sult (no error). All other pixels are wrong, either too high
(green) or too low (red).

Bottom: Same with the error of the floor of fluint8’s sum
function. This shows that the output is usually not even
in the correct interval. However, observe the multitude of
Triforces!

Nowhere, or a lot of places if you think about it: The
modular addition operation from Section 6 is not pictured
for comparison because it would be all white, meaning no
error. You can actually imagine it occupies any blank por-
tion of this paper, such as the inner hole of a letter ‘o,’ or
the entire back of a page if printed single-sided.

Graphics produced using ImageRGBA computational for

loop engine.

https://sourceforge.net/p/tom7misc/svn/HEAD/tree/trunk/grad/
https://sourceforge.net/p/tom7misc/svn/HEAD/tree/trunk/grad/


computing. Anyway, we are just dividing by 256 (by multi-
plying by 1/256) and then adding some mysterious constants
to ensure that the result is exactly 1 or 0.
Next, we can perform addition:

hfluint8 hfluint8 ::Plus(hfluint8 x, hfluint8 y) {

half HALF256 = GetHalf (0 x5c00); // 256.0

half z = x.h + y.h;

half o = RightShiftHalf8(z);

return hfluint8(z - o * HALF256 );

}

As in fluint8 we can simply add the arguments, giving
a result in [0, 512). The shift function just discussed then
allows us to compute 1 if the value is out of range or 0 oth-
erwise. We multiply this by a corrective constant (256.0)
and subtract that away. So easy.
For all other operations we work on the domain [0, 256).

We also have a right shift by one bit:

half RightShiftHalf1(half xh) {

half SCALE = GetHalf (0x37fa ); // 0.4985...

half OFFSET = GetHalf (0x66cd ); // 1741.0

return xh * SCALE + OFFSET - OFFSET;

}

Right shifting is integer division by two. Roughly we are
dividing by two and then offsetting to a part of the floating
point number line where only integers are representable,
then offsetting back. However, with a constant of exactly
0.5 some of the rounding would be in the wrong direction;
the constant 0.49853515625 just happens to work.
We can shift by multiple places by repeating this oper-

ation multiple times. However, the library has direct so-
lutions for several other shift distances, since this is more
efficient than repeating a single shift.
Next, bitwise operations. These are all based on the

AND function:

half BitwiseAndHalf(hfluint8 a, hfluint8 b) {

half result = GetHalf (0x0000 );

for (int bit_idx = 0; bit_idx < 8; bit_idx ++) {

// Low order bit as a - ((a >> 1) << 1)

hfluint8 as = RightShift1(a);

hfluint8 bs = RightShift1(b);

half a_bit = a.h - LeftShift1Under128(as).h;

half b_bit = b.h - LeftShift1Under128(bs).h;

// Computes 2^ bit_idx. A constant.

half scale = GetHalf (0x3c00 + 0x400 * bit_idx );

half and_bits = RightShiftHalf1(a_bit + b_bit);

result += scale * and_bits;

// and keep shifting down

a = as;

b = bs;

}

return result;

}

This function shifts each input down 8 times, stripping
off the low order bit at each step. Note that since we run
this loop exactly 8 times, it can simply be unrolled, remov-
ing any whiff of non-linearity, and the constants computed
at compile time. LeftShift1Under128(x) is just x + x
without any need to worry about modular arithmetic, as it
cannot overflow.
An interesting line is the computation of and_bits,

which is the logical AND of the low-order bit from a and

b. In fluint8 we simply compute a_bit * b_bit. This has
the correct value, but is not linear (observe that if we were
to compute x & x we would end up squaring a function of x
here). Instead we compute (a_bit + b_bit) >> 1, which
produces the correct result.

Being able to compute the bits in common allows us to
easily derive OR and XOR:

hfluint8 BitwiseOr(hfluint8 a, hfluint8 b) {

half common = BitwiseAndHalf(a, b);

return hfluint8 ((a.h - common) + b.h);

}

hfluint8 BitwiseXor(hfluint8 a, hfluint8 b) {

half common = BitwiseAndHalf(a, b);

return hfluint8 ((a.h - common) + (b.h - common ));

}

These subtractions and additions cannot overflow.

It will be common to perform bitwise operations with
constants, so hfluint8 supports versions with a compile-time
constant argument, which can skip a bunch of work. These
run about 5× faster.

We also have some operations that are not supported by
fluint8 but that we will need for the current project. A
basic operation is to test for zero. IsZero returns 1 if the
input is 0, or returns 0 for any other argument:

hfluint8 IsZero(hfluint8 a) {

half H255 = GetHalf (0x5bf8); // 255.0

half H1 = GetHalf (0 x3c00); // 1.0

half nota = (H255 - a.h);

return hfluint8(RightShiftHalf8(nota + H1));

}

For an input of zero, complementing it yields 255, and
adding 1 overflows to set the 8th bit. So we shift that bit
to the ones place and are done.19

With this, Eq(a, b) is just IsZero(a - b). We can
define a number of operations like “boolean or” that as-
sume inputs of exactly 1 or 0; these are straightforward
and much faster than their bitwise counterparts. We could
think of these values as hflbools, although we still use the
hfluint8 type for them. The main way to use a hflbool is
If. If(cc, t) returns t if cc is exactly 1, returns 0 if cc
is 0, and is otherwise undefined. A simple implementation
of this is:

half H255 = GetHalf (0x5bf8); // 255.0

hfluint8 mask = hfluint8(cc.h * H255);

return BitwiseAnd(mask , t);

This computes either the mask 00000000 or 11111111

and uses the existing bitwise AND operation. Bitwise AND
is not fast, and it does more work than it needs to in this
case because we know one of the arguments is all zeroes or
all ones. It is faster to inline the bitwise AND routine but
keep checking the ones place. Even better is this wild ride:

19Earlier iterations of this function were much more complex! For
example, x + 15 + 65248 − 65248 × 0.03125 maps 0 to 0, but any
other number to some number in [1, 15], and then a similar function
compresses that range down to exactly 0 or 1. But sometimes you
miss the obvious stuff until you start writing a paper about it for a
prestigious conference. No doubt some other functions in here could
be improved!



hfluint8 If(hfluint8 cc, hfluint8 t) {

static std::array <half , 8> OFF = {

GetHalf (0x77f9), GetHalf (0x7829),

GetHalf (0x77fb), GetHalf (0x78e2),

GetHalf (0x77fd), GetHalf (0x780b),

GetHalf (0x77ff), GetHalf (0x7864),

};

half HALF1 = GetHalf (0x3c00 ); // 1

half HALF128 = GetHalf (0 x5800); // 128

half HALFNEG1 = GetHalf (0 xbc00); // -1

half HALF0 = GetHalf (0x0000 ); // 0

half xh = t.h;

half nch = HALF1 - cc.h;

half c128 = HALF128 * nch;

std::array <half , 8> COFF;

for (int i = 0; i < 8; i++)

COFF[i] = OFF[i] * nch;

for (const half &h : COFF) xh = xh + h - h;

xh = (c128 - xh);

for (const half &h : COFF) xh = xh + h - h;

return hfluint8(xh * HALFNEG1 + HALF0);

}

The 8 constants in OFF, when added to and subtracted
from a hfluint8, will always round such that the low six
bits become 0. To have behavior conditional on cc, first we
multiply each constant by 1− cc. This results in either the
original constant or 0. If zero, then adding and subtract-
ing them does nothing. Then we add and subtract those
results, clearing the low six bits, and (conditionally, using
the same trick of multiplying by the condition) subtract
from 128. This clears the top two bits for the range of pos-
sible values (but may reset low-order bits). Then we add
and subtract the sequence again, clearing the low six bits
again. At the end we apply a corrective negation and then
add 0 to avoid outputting −0 and we’re done.

hfluint16. Several other operations are available for
hfluint8, like AddWithCarry, but we shan’t elaborate them
all here, lest we contract hfluenza. One more concept
is needed before we get to the application: 16-bit inte-
gers. The hfluint16 type is implemented as a pair of
hfluint8 bytes. We will only need a small number of op-
erations: Addition, subtraction, bitwise operations, sign
extension of hfluint8, If, and stuff like that. These are all
cleanly implemented in terms of the fluint8 operations like
AddWithCarry.

7.3 Linear gameplay

Now we can build an 8-bit computer. I like to work at
the intersection of theory, impractice, practice, and enter-
tainment, and the most entertaining 8-bit computer is the
Nintendo Entertainment System, so let’s build that. The
full NES has many components (video output, controllers,
sound, RAM, cartridge mappers), and it’s not even clear
what it would mean to implement “linear” versions of these.
So for this project we will replace the CPU, which is a vari-
ant of the Motorola 6502 called the Ricoh 2A03. Each in-
struction that the CPU executes will be done entirely with

linear half-precision floating point operations. This is done
in software emulation, upgrading a version of the FCEUX
Emulator [3] that I forked many years ago [23].

The 2A03 has 8-bit registers A, X, Y, a stack pointer S

and processor flags P. Each is represented as a hfluint8, of
course. It also has a 16-bit program counter PC, which we
represent as a hfluint16. Putting aside the many complexi-
ties, at each step it reads the byte at the program counter,
which denotes one of its 256 instructions. It then executes
the corresponding instruction, which produces new values
for the registers and advances the program counter a vari-
able amount. For example, a very simple instruction is TAX
(0xAA), which could be implemented like this:

reg_X = reg_A;

reg_P = (Z_FLAG8 | N_FLAG8) & reg_P;

hfluint8 zf = IsZero(reg_A) << 1;

hfluint8 nf = N_FLAG8 & reg_A;

reg_P = reg_P | nf | zf;

It is not implemented like this. Everything gets more
complicated. But anyway, the TAX instruction Transfers
(copies) the A register to the X register, and then updates
the Zero and Negative bits of the flags register. We have
all of these operations on hfluint8, so it’s just a matter of
doing it.

Memory. For instructions that act solely on registers,
this approach suffices. Most instructions read from or write
to memory, including just to read additional arguments to
the instruction. This is a problem because we don’t have
any kind of branching; we always need to execute the exact
same sequence of additions and scaling operations. We can
work with this by computing condition codes: “Is this write
actually happening, or are we just computing it because we
always have to do the same sequence of operations?” Then
a write addr = val can be made conditional using our If
operation, like

memaddr = If(cc, val) + If(1− cc, memaddr)

This has other problems (for example when the address is
not know at compile time, which is typical) but the biggest
one is that all memory accesses on the NES are potentially
effectful. This is because various things are attached to the
memory controller that perform actions when addresses are
accessed. For example, writing two consecutive bytes to
0x2006 will load them as an address into another chip (the
PPU) and then writing to 0x2007 will write bytes into video
memory at that address. Writing to 0x4014 will begin a
DMA loop that copies 256 bytes from the main address
space to video RAM, suspending the CPU for 512+ cycles.
Reads can have effects as well, and these effects are not from
a small set because they can include arbitrary hardware in
the cartridge itself [25]!

So here we have a sort of concession: We intro-
duce two primitive operations ReadIf(cc, addr) and
WriteIf(cc, addr, val). These take a hfluint8 condition
cc (exactly 0 or 1), a hfluint16 address, and (for writes) a
hfluint8 value to write. If the condition code is 0, nothing
happens, and an arbitrary value is returned. If 1, the read



Figure 17: During the development of the emulator, the
FPS achieved (blue) versus the number of times the code
“cheats” due to incomplete implementation (red). Log
scale. Honestly there’s not much to get from this except
that we start with a lot of FPS (3500) and a lot of cheats
(65 million) and end with few FPS (0.1) and no cheats. I
guess it also shows that this took many iterations to im-
plement. The reason that cheats does not monotonically
decrease is that a single cheat (e.g. a switch on the in-
struction byte) can mask the need for hundreds of other
cheats.

or write takes place, including its side-effects. This would
be a realistic model if we implemented a hardware ver-
sion of this chip, which only used floating point operations
internally; its hardware pins for interfacing with memory
would simply include a bit for whether we actually want
the read or write to happen.20 (The actual 2A03 pinout
has a “R/W” pin, for example.)

Doing it correctly. The remainder is reasonably
straightforward given the tools we’ve already built. One
challenge is simply not screwing up. 256 instructions is a
lot, and the original code is extremely awful; it is filled with
macro hacks that assume specific variable names and values
of constants, pirate jokes, references to mysterious global
variables named stuff like temp, feuds between developers
commenting out each other’s “wrong” code, and so on. As
I developed the hfluint8-based emulator, I strove to keep
the emulator in a working state as often as possible so that
I could test it against the reference implementation. One
technique was to do various pieces of code in easy, cheating
ways, but to record each time I cheated by incrementing a
global counter. Each time I replaced reasonable fast code
with ideologically pure, non-cheating code, which is typi-
cally much slower, the cheating went down and the runtime
went up; see Figure 17. This makes it like a game.

Another challenge is that the 2A03 has dozens of undoc-

20A similar concession is made for interrupts. This is handled at
the start of the instruction loop using C code, though all the com-
putation is performed with hfluint8. Essentially we can think of the
interrupt handling as being done in a linear way, but the decision to
handle an interrupt instead of executing an instruction being done by
“hardware.”

umented instructions with mysterious behavior. Most of
these are not used by any game in my test suite, which
means I run the risk of breaking one of these instructions
and not knowing. Some of these instructions are very weird,
since they are essentially the consequence of 6502 sub-units
(designed for implementing other instructions) being con-
nected together in ways that are not motivated by useful
behavior. For example, the XAA instruction (0x8B) bitwise-
ORs the A register with 0xEE (setting all but two bits),
then ANDs with the X register, then ANDs with an immedi-
ate byte. Others are just as weird but much more complex.
Since I want the emulator to be as complete and correct as
possible, I wrote a new “game” that I could use as an addi-
tional test ROM (Figure 18). This “game” executes dozens
of undocumented instructions at startup, writing interest-
ing state to RAM to create a record of their behavior. The
game then displays the first half of RAM on screen. This
gives some amount of protection against regression on these
instructions.

Everything, everywhere, all at once. Each instruc-
tion is otherwise straightforward to implement. The re-
maining challenge has to do with the instruction dispatch.
A natural way to write the instruction loop is to do switch
on the instruction byte, but that is not a linear operation.
Instead, we always execute all of the instructions. Before
this, we make 256 copies of the CPU state (the registers);
this is linear because it’s just copying a finite number of
variables. Each copy also has an active flag (a hfluint8
with 1 or 0). We set this for exactly one of these instruc-
tions, by computing If(Eq(insn_byte, n)) for each of the
256 n. Then we execute each instruction on its copy of the
state; it does all its computation, and any read or write is
additionally conditioned on its active flag. This way only
the active instruction’s memory accesses actually occur.

We then need to select the instruction that was actually
executed and copy its state back to the “real” CPU state.
We do this by conditionally clearing each register:

reg = If(active, reg)

We then set the real CPU’s register to the sum of all of
the registers from the instruction-specific states. Exactly
one (the active one) will be nonzero, so we get that value.
We use this same technique to keep track of how many
cycles have elapsed, since various emulator timing depends
on this.

A bad thing about this approach is that it’s more than
256 times slower than just executing a single instruction,
and this is the main reason why the emulator is so slow.
A good thing is that there is no cheating. Another good
thing is that the instructions are all reading and writing
distinct data, so they can actually be executed in parallel.
The final benchmarks here are from running on 8 cores.

7.3.1 It’s a-fine, Mario!

The emulator can play any NES game supported by
FCEUX (which is basically all of them; despite the horrors
in this emulator’s code, it has great compatibility). My



Figure 18: Exciting Nintendo “game” showing the first half
of the NES RAM after executing a test of dozens of undocu-
mented instructions. The “game” cannot be won. It exists
only to destroy your mind.

benchmark was the first level of the classic Super Mario
Bros., playing sequence of 2210 inputs that completes level
1-1 in 36 seconds. The emulator runs this as fast (or as
slow) as it can. Normal frame rate is 60 FPS. The original
implementation runs at 3500 FPS; after many performance
tweaks I got my hfluint8 version to run at

0.1154 FPS

In print, the frame-rate is always zero, anyway (Fig-
ure 19). 8.6 seconds per frame is firmly in “not playable”
territory, but it is tolerable for installation artwork, let’s
say. I have played AAA titles that, at launch, inexplicably
had comparable framerates on a high-end GPU, and these
games were no doubt executing a great many non-linear
instructions.

8 Conclusion

Implementing a basic computer (with an extant software
library) using floating point addition and scaling demon-
strates the highly general computing power they contain,
despite approximating mathematically limited operations.
We can say informally that they are Turing complete.
This also renders the previous sections moot; performance
notwithstanding, we could directly implement the Mandel-
brot set, the tanh transfer function, or AES using this 8-bit
computer. It also immediately gives us a linear chess en-
gine (including game tree search and a user interface) by
emulating chessmaster.nes; in fact this engine already
participated in our tournament (Figure 8)!

Figure 19: Mario completing level 1-1 in 36 seconds of
game time, or 19,143 minutes of wall time, using only float-
ing point roundoff error from addition and scaling.

8.1 Future work

If I remember correctly (and I probably don’t), Goëdel
showed that an axiomatic system with addition and multi-
plication can encode sufficient facts about the natural num-
bers to engender incompleteness [9]. However, a system
with only addition (such as Presburger arithmetic) does not
have this problem. Incompleteness is similar to the halting
problem for Turing complete systems, in that it is easy to
encounter given a small set of primitives and the canonical
demonstration is a diagonalization argument. Is floating
point addition alone Turing complete? Can we prove it?
If so, is the fact that real mathematical addition and mul-
tiplication have this deep incompleteness property related
to the fact that IEEE-754 addition and multiplication have
the deep computational property?21 Coincidence?!22

If not addition alone, the FMA (fused multiply-add) in-
struction very likely suffices, as it performs both a multi-
plication and addition. This makes sense, as the equation
F = MA is fundamental to physics.

Linear logic???

Thinking about the 2A03 implementation, each loop ex-
ecutes the exact same set of instructions, with a high de-
gree of parallelism. The use of condition codes mimics
the way that VLIW machines and modern GPUs execute
data-parallel programs. This seems to lend itself to highly
parallel execution on GPUs; in fact the “Tensor cores”

21No.

22Yes.



designed for accelerating ML inference can likely execute
these floating-point operations. Moreover, since the oper-
ations being executed are linear, the entire computation is
trivially differentiable. This means that, if you don’t think
about it too hard (but you need to think about it a medium
amount of hard, because it is a confusing thought), you
could use a finite sequence of NES instructions as transfer
functions in a network, and back-propagate errors (giving
an error vector towards a machine state and controller in-
puts that would yield the desired output state). This of
course would not actually work, similar to how automatic
differentiation does not actually work.
Not everyone uses IEEE-754 floating point these days.

For example the bfloat16 format has gained traction in
machine learning. Are similar tricks possible in these alter-
nate universes, or is IEEE-754 simply the best forever?
Other applications of this technology are possible, and

further study is warranted. For example, a common act
in video editing is to rearrange clips from a source video
in alphabetical order [2]. It was formerly believed that
this required non-linear video editing (aside from “Already
Being Filmed In Lexicographic Order Type Videos”). But
it seems straightforward to use techniques from this paper
to perform them linearly.

8.1.1 Conclusion Conclusion

A line has been drawn in the sand. y is truly equal to mx
plus b. The professor has been defeated. The dead horse
has been beaten. The paper is finally over.

References

[1] 754–2008 IEEE standard for floating-point arithmetic.
Technical Report 754–2008, IEEE Computer Society,
August 2008.

[2] ARST ARSW: Star wars sorted alphabetically, June
2014. http://radar.spacebar.org/f/a/weblog/

comment/1/1109.

[3] adelikat et al. FCEUX, the all in one NES/Famicom
emulator. http://fceux.com/.

[4] Rodrigo Benenson. Are we there yet?, 2016. http:

//rodrigob.github.io/are_we_there_yet/build/.

[5] L. Blum, M. Blum, and M. Shub. A simple un-
predictable pseudo-random number generator. SIAM
Journal on Computing, 15(2):364–383, 1986.

[6] Arpad E Elo. The rating of chessplayers, past and
present. Arco Pub., 1978.

[7] Horst Feistel. Cryptography and computer privacy.
Scientific American, 228(5):15–23, 1973.

[8] Herrn Frobenius. Über lineare substitutionen und bi-
lineare formen. Journal für die reine und angewandte
Mathematik (Crelles Journal), 1878(84):1–63, 1878.

[9] Kurt Gödel. Über formal unentscheidbare sätze der
principia mathematica und verwandter systeme I.
Monatshefte für Mathematik, November 1930.

[10] Johan H̊astad, Russell Impagliazzo, Leonid A Levin,
and Michael Luby. A pseudorandom generator from
any one-way function. SIAM Journal on Computing,
28(4):1364–1396, 1999.

[11] Allen Hux. The OpenCL extension specification,
November 2015.

[12] Diederik P. Kingma and Jimmy Lei Ba. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[13] Donald E. Knuth. The Art of Computer Program-
ming, Volume 2: Seminumerical Algorithms. Addison-
Wesley, Boston, third edition, 1997.

[14] Alex Krizhevsky, Geoffrey Hinton, et al. Learning mul-
tiple layers of features from tiny images. 2009.

[15] Yann LeCun, Léon Bottou, Yoshua Bengio, and
Patrick Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[16] Pierre L’ecuyer and Richard Simard. TestU01: A C
library for empirical testing of random number gener-
ators. ACM Transactions on Mathematical Software
(TOMS), 33(4):1–40, 2007.

[17] William E. Lorensen and Harvey E. Cline. March-
ing cubes: A high resolution 3D surface construction
algorithm. ACM SIGGRAPH Computer Graphics,
21(4):163–169, August 1987.

[18] George Marsaglia. DIEHARD: a battery of tests of
randomness. http://stat.fsu.edu/geo, 1996.

[19] Mitsuru Matsui. Linear cryptanalysis method for DES
cipher. In Advances in Cryptology—EUROCRYPT
’93: Workshop on the Theory and Application of Cryp-
tographic Techniques, pages 386–397. Springer, May
1994.

[20] Jim McCann and Tom Murphy, VII. The fluint8
software integer library. In A Record of the Proceed-
ings of SIGBOVIK 2018, pages 125–128, April 2018.
sigbovik.org/2018.

[21] Mark D. McDonnell and Tony Vladusich. Enhanced
image classification with a fast-learning shallow con-
volutional neural network, 2015.

[22] Joseph Menn. Secret contract tied NSA and
security industry pioneer. Reuters, Decem-
ber 2013. https://www.reuters.com/article/

us-usa-security-rsa-idUSBRE9BJ1C220131220.

http://radar.spacebar.org/f/a/weblog/comment/1/1109
http://radar.spacebar.org/f/a/weblog/comment/1/1109
http://fceux.com/
http://rodrigob.github.io/are_we_there_yet/build/
http://rodrigob.github.io/are_we_there_yet/build/
sigbovik.org/2018
https://www.reuters.com/article/us-usa-security-rsa-idUSBRE9BJ1C220131220
https://www.reuters.com/article/us-usa-security-rsa-idUSBRE9BJ1C220131220


[23] Tom Murphy, VII. The first level of Super Mario Bros.
is easy with lexicographic orderings and time travel. In
A Record of the Proceedings of SIGBOVIK 2013, vol-
ume 2013, pages 112–133. The Association for Com-
putational Heresy, 2013.

[24] Tom Murphy, VII. What, if anything, is epsilon? In A
Record of the Proceedings of SIGBOVIK 2014, pages
93–97. ACH, April 2014. sigbovik.org/2014.

[25] Tom Murphy, VII. Reverse emulating the NES
to give it SUPER POWERS! Deconstruct 2018;
YouTube, 2018. http://radar.spacebar.org/f/a/

weblog/comment/1/1157.

[26] TomMurphy, VII. Elo World: A framework for bench-
marking weak chess algorithms. In A Record of the
Proceedings of SIGBOVIK 2019. ACH, April 2019.
sigbovik.org/2019.

[27] Tom Murphy, VII. NaN gates and flip FLOPS. In A
Record of the Proceedings of SIGBOVIK 2019, April
2019. sigbovik.org/2019.

[28] Jon Postel. DoD standard Transmission Control Pro-
tocol. RFC 761, January 1980.

[29] Christian Rau. half - IEEE 754-based half-
precision floating-point library, 2022. https://half.
sourceforge.net/.

[30] Tord Romstad, Marco Costalba, and Joona Kiiski.
Stockfish chess, 2023. https://stockfishchess.

org/.

[31] Bruce Schneier. Applied Cryptography Second Edition:
Protocols, algorithms and source code in C. John Wi-
ley & Sons, 1996.

[32] Unknown. The Nine Chapters on the Mathematical
Art. Han Dynasty, 179.

sigbovik.org/2014
http://radar.spacebar.org/f/a/weblog/comment/1/1157
http://radar.spacebar.org/f/a/weblog/comment/1/1157
sigbovik.org/2019
sigbovik.org/2019
https://half.sourceforge.net/
https://half.sourceforge.net/
https://stockfishchess.org/
https://stockfishchess.org/

	Introduction
	A refresher on neural networks
	A fine terminological issue
	Half-precision IEEE-754 floating point
	Bonus digression: Downshift
	Neural network experimental results

	Non-monotonic functions
	Fractals
	Bonus digression: Baffling numbers

	Linear cryptography
	Benchmark results

	THE ULTIMATE THROWBACK
	Fluint8
	hfluint8
	Linear gameplay
	It's a-fine, Mario!


	Conclusion
	Future work
	Conclusion Conclusion



