
Elo World, a framework for
benchmarking weak chess
engines

DR. TOM MURPHY VII PH.D.

CCS Concepts: • Evaluation methodologies → Tour-
naments; • Chess → Being bad at it;

Additional Key Words and Phrases: pawn, horse, bishop,

castle, queen, king

ACH Reference Format:
Dr. Tom Murphy VII Ph.D.. 2019. Elo World, a framework
for benchmarking weak chess engines. 1, 1 (March 2019),
13 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Fiddly bits aside, it is a solved problem to maintain
a numeric skill rating of players for some game (for
example chess, but also sports, e-sports, probably
also z-sports if that’s a thing). Though it has some
competition (suggesting the need for a meta-rating
system to compare them), the Elo Rating System [2]
is a simple and effective way to do it. This paper is
concerned with Elo in chess, its original purpose.
The gist of this system is to track a single score

for each player. The scores are defined such that the
expected outcomes of games can be computed from
the scores (for example, a player with a rating of
2400 should win 9/10 of her games against a player
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with a rating of 2000). If the true outcome (of e.g. a
tournament) doesn’t match the expected outcome,
then both player’s scores are adjusted towards values
that would have produced the expected result. Over
time, scores thus become a more accurate reflection
of players’ skill, while also allowing for players to
change skill level. This system is carefully described
elsewhere, so we can just leave it at that.

The players need not be human, and in fact this can
facilitate running many games and thereby getting
arbitrarily accurate ratings.

The problem this paper addresses is that basically
all chess tournaments (whether with humans or com-
puters or both) are between players who know how
to play chess, are interested in winning their games,
and have some reasonable level of skill. This makes
it hard to give a rating to weak players: They just
lose every single game and so tend towards a rating
of −∞.1 Even if other comparatively weak players
existed to participate in the tournament and occasion-
ally lose to the player under study, it may still be dif-
ficult to understand how this cohort performs in any
absolute sense. (In contrast we have “the highest ever
human rating was 2882,” and “there are 5,323 play-
ers with ratings in 2200–2299” and “Players whose
ratings drop below 1000 are listed on the next list as
’delisted’.” [1]) It may also be the case that all weak
players always lose to all strong players, making it un-
clear just howwide the performance gap between the
two sets is. The goal of this paper is to expand the dy-
namic range of chess ratings to span all the way from
extremely weak players to extremely strong ones,
while providing canonical reference points along the
way.

1Some organizations don’t even let ratings fall beneath a certain
level, for example, the lowest possible USCF rating is 100.
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2 ELOWORLD

Elo World is a tournament with dozens of computer
players. The computer players include some tradi-
tional chess engines, but also many algorithms cho-
sen for their simplicity, as well as some designed to
be competitively bad.

The fun part is the various algorithms, so let’s get
into that. First, some ground rules and guidelines:

• No resigning (forfeiting) or claiming a draw.
The player will only be asked to make a move
when there exists one, and it must choose a
move in finite time. (In practice, most of the
players are extremely fast, with the slowest
ones using about one second of CPU time per
move.)

• The player can retain state for the game, and ex-
ecutes moves sequentially (for either the white
or black pieces), but cannot have state mean-
ingfully span games. For example, it is not per-
mitted to do man-in-the-middle attacks [4] or
learn opponent’s moves from previous rounds,
or to get better at chess. Themajority of players
are actually completely stateless, just a func-
tion of type position → move.

• The player should try to “behave the same”
when playing with the white or black pieces.
Of course this can’t be literally true, and in
fact some algorithms can’t be symmetric, so
it’s, like, a suggestion.

• Avoid game-tree search. Minimax, alpha–beta,
etc. are the correct way to play chess program-
matically. They are well-studied (i.e., boring)
and effective, and so not well suited to our prob-
lem. A less obvious issue is that they are end-
lessly parameterizable, for example the search

The player is deterministic
Traditional approach to chess (e.g. engine)
Vegetarian or vegetarian option available
A canonical algorithm!
Stateful (not including pseudorandom pool)
Asymmetric

Fig. 1. Key

ply; this leaves us with a million things to fid-
dle with. In any case, several traditional chess
engines are included for comparison.

2.1 Simple players

random_move. We must begin with the most canoni-
cal of all strategies: Choosing a legal move uniformly
at random. This is a lovely choice for Elo World,
for several reasons: It is simple to describe. It is
clearly canonical, in that anyone undertaking a sim-
ilar project would come up with the same thing. It
is capable of producing any sequence of moves, and
thus completely spans the gamut from the worst pos-
sible player to the best. If we run the tournament
long enough, it will eventually at least draw games
even against a hypothetical perfect opponent, a sort
of Boltzmann Brilliancy. Note that this strategy actu-
ally does keep state (the pseudorandom pool), despite
the admonition above. We can see this as not really
state but a simulation of an external source of “true”
randomness. Most other players fall back on making
random moves to break ties or when their primary
strategy does not apply.

same_color. When playing as white, put pieces
on white squares. Vice versa for black. This is ac-
complished by counting the number of white pieces
on white squares after each possible move, and then
playing one of the moves that maximizes this num-
ber. Ties are broken randomly. Like many algorithms



described this way, it tends to reach a plateau where
the metric cannot be increased in a single move, and
then plays randomly along this local maximum (Fig-
ure 2). This particular strategy moves one knight at
most once (because they always change color when
moving) unless forced; on the other hand both bish-
ops can be safely moved anywhere when the metric
is maxed out.

8 0m0s0Z0l
7 ZQZ0s0ap
6 0o0o0o0m
5 o0oPo0o0
4 PZPjRZ0Z
3 ZPZPZPZN
2 0Z0Z0ZBO
1 ZNZRZ0ZK

a b c d e f g h

Fig. 2. same_color (playing as white) checkmates
same_color (playing as black) onmove 73. Note that since
white opened with Nh3, the h2 pawn is stuck on a black
square. Moving the knight out of the way would require
that move to be forced.

opposite_color. Same idea, opposite parity.

pacifist. Avoid moves that mate the opponent,
and failing that, avoid moves that check, and failing
that, avoid moves that capture pieces, and failing
that, capture lower value pieces. Break ties randomly.
This is one of the worst strategies, drawing against
players that are not ambitious about normal chess
pursuits, and easily losing to simple strategies. On

the other hand, it does rarely get forced into mating
its opponent by aggressive but weak players.

first_move. Make the lexicographically first legal
move. The moves are ordered as ⟨src_row, src_col,
dst_row, dst_col, promote_to⟩ for white (rank 1
is row 0) and the rows are reversed for black to make
the strategy symmetric. Tends to produce draws (by
repetition), because knights and rooks can oftenmove
back and forth on the first few files.

alphabetical. Make the alphabetically first move,
using standard PGN short notation (e.g. “a3” < “O-O”
< “Qxg7”). White and black both try to move towards
A1.

huddle. As white, make moves that minimize the
total distance between white pieces and the white
king. Distance is the Chebyshev distance, which is
the number of moves a king takes to move between
squares. This forms a defensive wall around the king
(Figure 3).

swarm. Like huddle, but instead move pieces such
that they are close to opponent’s king. This is es-
sentially an all-out attack with no planning, and
manages to be one of the better-performing “simple”
strategies. From the bloodbaths it creates, it even
manages a few victories against strong opponents
(Figure 4).

generous. Move so as to maximize the number of
opponent moves that capture our pieces, weighting
by the value of the offered piece (p = 1, B = N = 3,
R = 5, Q = 9). A piece that can be catpured multiple
ways is counted multiple times.

no_i_insist. Like generous, but be overwhelm-
ingly polite by trying to force the opponent to accept
the gift of material. There are three tiers: Avoid at



8 0ZrZ0Z0s
7 Z0Z0ZnZ0
6 0o0Z0ZpZ
5 mPZ0Z0Zp
4 0Opj0Z0O
3 Z0MPSNO0
2 0aROPO0Z
1 Z0AQJBZ0

a b c d e f g h

Fig. 3. huddle (white) checkmates pacifist on move 158
with substantial help. Note that white’s distal pawns have
advanced; these are actually the same distance from the
King as they would be in their home row, since the distance
metric includes diagonal moves.

all costs mating the opponent (and moreso check-
mating). Stalemate is polite, but it is more canonical
for two polite players to form a draw by repetition,
from continually offering up material to one another
and declining it. Next, avoid situations where the op-
ponent can refuse our gift; among these, prefer the
move where the opponent must capture the highest
value piece. Finally, prefer moves where the expected
value of the offered material (i.e. against random
play) is highest. (This means that if there are three
moves, and one captures a rook but the others cap-
ture nothing, the value is 5/3.) This strategy almost
never wins, but is not among the worst players, since
it often forces a draw by exchanging all its pieces.

reverse_starting. This player thinks that the
board is upside-down, and as white, tries to put its
pieces where black pieces start. Since here we have
a specific configuration in mind, we can produce a

8 rmblka0s
7 opZpopZp
6 0Z0Z0Z0o
5 ZBo0Z0Z0
4 0Z0OnO0Z
3 Z0Z0Z0Z0
2 POPZ0ZPO
1 SNZQJ0MR

a b c d e f g h

Fig. 4. swarm (white) vs. stockfish1m_r4096 with black
to move after 1. d4 Nf6 2. Bh6 gxh6 3. f4 c5 4. e4 Nxe4
5. Bb5. Black blunders 5. . . f6??, which must have been a
random move as swarm immediately wins with 6. Qh5++.

distance metric by computing the total distance from
each piece to its desired destination. Each piece uses
a different distance metric; Chebyshev distance for
the King, Manhattan distance for the Rook, and a
pretty weird function for the Knight [3]. Trying to
move the pieces into the reversed starting position
often causes some conflict since the black pieces are
already there, but can also end peacefully (Figure 5).

cccp. Prioritize moves that Checkmate, Check, Cap-
ture or Push, in that order. Pushmeans tomove pieces
as deep as possible into enemy territory (without any
regard for their safety). Ties are broken deterministi-
cally by the source/destination squares, so this one
is technically asymmetric. За здоровье!

suicide_king. Take a random move that mini-
mizes the distance between the two kings. Putting



8 0MBZKZ0S
7 Z0Z0Z0Z0
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 0Z0Z0ZpZ
1 snaqjbm0

a b c d e f g h

Fig. 5. reverse_starting draws against itself by repeti-
tion, both players having happily moved their surviving
pieces into the correct spots.

one’s king out in the open is very unprincipled (Fig-
ure 6), but it does produce enough pressure to win
against unambitious opponents.

sym_mirror_y. As white, try to maximize symme-
try when flipping vertically. Zero penalty for oppos-
ing e.g. ak with a K, but a small penalty when the
pieces are not the same type, and a larger penalty
when they are not opposite colors. The starting posi-
tion is already symmetric this way, so this usually has
the effect of copying the opponent’s moves when pos-
sible. As “copy your opponent’s moves” is a common
(but underspecified) strategy discovered by many
children, this player is close to being canonical. How-
ever, it admits a bit too much arbitrary choice in the
penalties assigned.

sym_mirror_x. As sym_mirror_y, but maximize
symmetry when flipping horizontally. This does not
make much chess sense, but can produce aesthetic
arrangements.

8 rZbl0ans
7 opopZpZp
6 0ZPL0Z0Z
5 Z0Z0Z0Z0
4 0ZkZ0Z0Z
3 Z0Z0Z0Z0
2 POPZPOPO
1 SNZ0JBMR

a b c d e f g h

Fig. 6. suicide_king (black) dramatically failing against
cccp’s slightly more principled play, after 1. d4 g5 2. Bxg5
Nc6 3. Bxe7 Kxe7 4. d5 Kd6 5. dxc6+ Kc5 6. Qd6+ Kc4.White
delivers a discovered mate with 7. e4++.

sym_180. As sym_mirror_y, but maximize symme-
try under 180° rotation of the board (Figure 7). An
emergent priority is to “castle” with the king and
queen to “fix” them.

min_oppt_moves. Take a move that minimizes the
number of resulting legal moves for the opponent,
breaking ties randomly. This is a beautifully simple
approach that generalizes many chess principles: Oc-
cupying space reduces the destination squares avail-
able to the opponent; capturing their pieces reduces
the number of their pieces that they can move; pin-
ning pieces or checking the king further reduces the
legal moves; and mating the opponent is the best
possible move.2 Among the players in the paper, this
one is Pareto efficient in terms of its simplicity and
effectiveness.

2However note that it does not distinguish checkmate and stale-
mate, despite these having very different results.



8 0ZbjrZ0Z
7 Z0Z0Z0Z0
6 nZrZpopo
5 ZPopL0ZP
4 NZ0APOPZ
3 ZPOPZRZN
2 0Z0Z0Z0Z
1 Z0ZRJBZ0

a b c d e f g h

Fig. 7. sym_180 (white) vs. pacifist after 66 moves. Note
that the position is not quite rotationally symmetric, but
is close given the material.

equalizer. Prefer to move a piece that has been
moved the fewest times, and then prefer moving
to a square that has been visited the fewest times.
Castling counts as moving both the king and rook,
and visiting both destination squares. This is the
first strategy described that keeps meaningful state.

2.2 Fate-based players

If we keep state, then we can track the location of
each piece as it moves around the board (allowing
us to distinguish the two rooks, or follow a pawn
as it promotes). We can then use statistics on the
average fates of each piece over hundreds of millions
of games to guide the moves. These statistics give
us, for each piece (e.g. the c2 pawn) and square, how
likely it is to end the game on that square, and how
likely it is to be alive or dead there when the game
ends [5].

safe. This strategy moves pieces towards squares
where they are likely to end the game alive. For this
strategy and several others, simply moving to maxi-
mize this score (e.g. its sum or product over all pieces)
is very boring, since the score is almost always max-
imized in the starting position. So this strategy ac-
tually makes each move randomly, weighted by the
total score of the resulting positions. The scores are
normalized (with the lowest-scoring move receiving
weight 0.0 and the highest 1.0) and then sampled ac-
cording to these weights. Without normalization, the
play is almost identical to uniformly random, since
the weights of the resulting positions tend to be very
similar (dominated by the many pieces that don’t
move). But it’s pretty arbitrary.

popular. Like safe, but the score for a piece/square
pair is the probability that the piece ends on that
square, whether it lives or dies. This player likes to
follow the crowd!

dangerous. The dual of safe; the score is the prob-
ability that the piece dies on that square. Note that
a king is said to die if it is checkmated or his side
resigns. This player likes to live life on the edge!

rare. The dual of dangerous; the score is one mi-
nus the probability of ending the game on that square.
This player has a thirst for adventure!

survivalist. Like the above, but the score is the
ratio of the survival and death probabilities on the
square. In the data set, every piece ends alive or dead
in every square (except for the bishops, which can
only legally occupy squares of their color) at least
1000 times, so each ratio is defined. Here, the sums
of ratios have plenty of variability, and the highest
ratios are not so often on the starting squares. So
with this strategy, we simply do a weighted sample



from the moves according to their (non-normalized)
scores.

fatalist. The dual of survivalist; the score is
the ratio of the death and survival probability on the
square. This player knows that even if you win, you
just have to keep playing over and over again, so you
might as well get it over with!

2.3 Engine-based players

Of course, people have been making more serious
attempts at automating chess since before computers,
and there are thousands of chess engines out there.
We include a few in here to represent the high end
of skill, and to make sure that weaker players are
evaluated somewhat in terms of their ability to play
chess proper, not just beat other weak players.

stockfish0. Stockfish [6] is probably the strongest
open-source chess engine (or even publicly available
engine); at full strength its play is estimated to be
around 3500 Elo on the FIDE scale. Aside from being
quite machine-dependent (it can search more moves
in a given amount of timewhen it has a fast CPUwith
many cores), there are many options to fiddle with.
Stockfish can use both opening books and endgame
tables; neither is used here. It also has a “difficulty”
setting, which is set here to 0. Stockfish is run in a
separate process, and the board is reset before each
move, but I am not extremely hygienic about flush-
ing e.g. internal hash tables between moves. One
consequence of this attempt at statelessness is that
Stockfish sometimes walks into a draw by repetition
in positions where it would be able to win, because
it doesn’t know that it is repeating positions.

stockfish5. Stockfish as above, but at difficulty 5.

stockfish10. Same, at difficulty 10.

stockfish15. Same, at difficulty 15.

stockfish20. And difficulty 20, themaximum. Even
at this difficulty, Stockfish produces moves basically
instantaneously.

stockfish1m. As expected, the engine’s perfor-
mance increases steadily as the difficulty setting in-
creases (without apparently affecting the time to
make moves). I don’t knowwhat it’s doing with these
settings. The true way to unleash chess engines is to
give them a lot of CPU and memory to search. Since
the tournament is run simultaneously across about
60 threads3 using dozens of gigabytes of memory, and
sometimes I would play Hollow Knight (aka N) while
it ran, I wanted to avoid having the chess skill be
dependent on the scheduling environment. So here,
Stockfish is given a “node” budget of 1 million, hence
1m. It takes about one second per move when run-
ning alone, and is easily the strongest player (type)
evaluated.

worstfish. On the other hand, a strong chess en-
gine can also be used to play badly. When playing
as white, for each legal move, I ask Stockfish (con-
figured as stockfish0) to evaluate the resulting po-
sition from black’s perspective.4 I then choose the
move that produces the best position for black. This
is easily the worst player evaluated, but it is not hard
to imagine ways it could be worse. Indeed, a common
twist on chess is to play for a loss, called Antichess
or Losing Chess [9]. Recently it was even proved that
white can always win (i.e. lose) [8] in this variant!
However, the variant requires that you capture a

3 The computer is the completely egregious AMD 2990WX
“Threadripper 2,” which has 32 cores (for 64 hardware threads) and
250 Watts of power dissipation at load. The torture of this CPU
was part of the impetus for the paper.
4By asking it to make a move, which also returns the evaluation
of its move. The UCI protocol does not seem to offer a way to
evaluate a position directly.



8 rZbJ0a0Z
7 ZpZpm0Z0
6 pZ0j0Z0M
5 Zno0oQZ0
4 0ZPZ0O0O
3 M0ZPZ0Z0
2 RZ0Z0ZBZ
1 Z0Z0A0ZR

a b c d e f g h

Fig. 8. suicide_king (white) to move against worstfish
after 36 moves. Since the kings are already at their
minimum distance, white will make a move at ran-
dom. 37. Qxe5++ wins for white immediately, but
suicide_king plays 37. Qxd7??. The only legal move is
37. . .Bxd7++, so worstfish must play it, and thus wins
one of its only victories.

piece if you are able to, so strategies and engines that
support this variant cannot be directly applied. We
could use stronger settings of Stockfish, but since
it already invokes Stockfish for each legal move, it
is also one of the slowest players. Like Stockfish, it
occasionally blunders an otherwise losing position
into a draw by repetition. But most importantly, its
search strategy when evaluating positions is not ap-
plying the correct logic (α–β pruning); it assumes
that its opponent will choose strong moves, and that
it will itself play strong moves in future plies. As a
result, it sometimes allows the opponent to create a
situation where worstfish is forced to checkmate
its opponent (Figure 8).

topple10k. Topple [7] is another strong open source
engine, provided to keep Stockfish on its toes. Here,
its node budget is 10,000.

topple1m. Topple with a node budget of 1 million,
which like stockfish1m takes about one second per
move. Stockfish almost always wins, though it is not
clear whether the budgets are actually comparable.

chessmaster.nes_lv1. This is Chessmaster for the
Nintendo Entertainment System, published in AD
1989. Moves are extracted from the game via emula-
tion. This proved to be somewhat delicate, because
the in-memory representation of the board is not
that simple (it appears to be represented in two par-
allel arrays, perhaps using the “0x88 method”) and
the game understandably goes wild if you mess it
up. To play a move, I restore a saved machine state
in the “board editor” mode, and then modify mem-
ory to contain the desired board. I then emulate but-
ton presses to operate the game menu and return
to “playing” mode. Chessmaster repairs its internal
data structures from this board, and makes a move.
During this time I mash controller buttons to skip
its dramatic tunes and modal messages like CHECK.
Once some memory locations reach certain values,
the move has been played; I can diff the before and
after boards to uniquely determine the move. Since
this approach uses emulation, it would normally be
completely deterministic, but I deliberately stall for
a random number of frames so that it can advance
its internal pseudorandom state. A nice thing about
this engine is that it is an earnest attempt at writ-
ing a good engine, but limited to the techniques of
the 1980s, and running on hardware that was under-
powered even for its day. It finishes well behind the



modern engines, but ahead of all the non-traditional
strategies.

chessmaster.nes_lv2. As above, but increasing
the “Level Of Play” to “Newcomer 2.” Chessmaster
has stronger levels still, but in these modes it will
think for several NES minutes, which takes multiple
seconds to emulate—too slow for our purposes. Still
much weaker than modern engines (Figure 9).

Fig. 9. stockfish1m (2019; running on amodernmachine)
beats chessmaster.nes_lv2 (1989; running on an emu-
lated NES) thousands of times without a loss or draw.

2.4 Blind players

blind_yolo. This player is only allowed to see the
64-bit mask of where pieces are placed on the board,
but not their colors or types. It is described in Color-
and Piece-blind Chess [4].

blind_kings. As blind_yolo, but forcing the pre-
diction to produce exactly one king for each side,
which improves its accuracy a little.

blind_spycheck. As blind_kings, but perform-
ing a “spy check” before each move. Here, the player
tries capturing each piece of a given (predicted) color
with other pieces of that same (predicted) color. If

such a move is legal, then one of the two pieces was
mispredicted, so we prefer the capture over sending
an incorrect position to the engine.

Each of these uses a neural network to predict the
configuration of the board, and then the equivalent
of stockfish1m to make a move for that predicted
board. (If that move is illegal because the board was
mispredicted, then it plays a random legal move.)
These players can therefore be seen as handicaps on
stockfish1m.

2.5 Interpolation methods

Even at its weakest setting, stockfish0 crushes all
of the nontraditional strategies. This is not surprising,
but it creates a problem for quantifying their differ-
ence in skill (do theywin one in amillion games? One
in 10100?). Having intermediate players allows some
Elo points to flow between the two tiers transitively.
One nice way to construct intermediate players is by
interpolation. We can interpolate between any two
players,5 but it is most natural to interpolate with
the most canonical player, random_move.

stockfish1m_rnnn. There are 15 players in this
group, each characterized by a number nnn. Before
each move, we generate a random 16-bit number; if
the number is less than nnn then we play a random
move and otherwise, a move as stockfish1m. The
values of nnn are chosen so that we mix a power-of-
two fraction of noise: stockfish1m_r32768 blends
half random with half strong moves, but we also
have 1/4 random, 1/8 random, 1/16, 1/32, . . . , 1/1024.
These give us a nice smooth gradation at high levels
of play (Figure 11). At the extremes, many games

5 Even if they are stateful! The interface separates “please give me
a move for the current state” and “the following move was played;
please update your state,” allowing them to disagree. So we can
just keep two independent states for the two players.



have no random moves, and the performance is diffi-
cult to distinguish from stockfish1m. Even at half
random moves, stockfish1m_r32768 consistently
beats the non-traditional players. So we also dilute
stockfish bymixingwith amajority of randommoves:
stockfish1m_r49152 is 3/4 random, and we also
have 7/8, 15/16, 31/32, and 63/64. At this point it
becomes hard to distinguish from random_move.
Note that playing 1/64 excellent moves and the

rest randomly doesn’t do much to help one’s per-
formance. On the other hand, playing one random
move for 63/64 strong ones does create a significant
handicap! Against strong opponents, it’s easy to see
how a mistake can end the game. Even against weak
ones, a blunder can be fatal (Figure 10).

8 rmblkans
7 opopo0Zp
6 BZ0Z0Z0Z
5 Z0Z0ZpoQ
4 0Z0ZPZ0Z
3 Z0Z0Z0Z0
2 POPO0OPO
1 SNA0J0MR

a b c d e f g h

Fig. 10. A demonstration of how quickly random play
can ruin a game. stockfish1m_r32768 (black; plays
half random moves and half strong moves) loses to
reverse_starting in one of the shortest possible se-
quences: 1. e4 g5 2. Ba6 f5 3. Qh5++. Both of black’s moves
are bad (so they must be random) but white’s 2. Ba6 is
a blunder as well. White is just pushing pieces as far as
possible; the mate is purely accidental.

3 RUNNING THE TOURNAMENT

Given the players, it’s a simple matter to simulate a
bunch of games. Since the tournament runs for tens
of thousands of CPU hours, there is of course some
code to allow it to checkpoint its work, to make effi-
cient use of CPU and RAM, and to provide attractive
ANSI graphics showing off its activity—but this is
all straightforward.6 The tournament accumulates
win/loss/draw counts for each pair of players (play-
ing as both white and black), as well as example
games used to debug or create the figures in this
paper.

After the tournament is done, or from any check-
point, I can run a separate program to produce Elo
(and other) rankings. Elo depends on the order in
which games are played, because it is designed to
take into account changes in player skill over time.
However, it is easy to just make up a random order in
which the games were played, because these players
do not change over time.
Despite its strong reputation, I found Elo to be

rather finnicky. It is sensitive to the starting scores
for the players, and the factor k which governs how
strong of a correction to make after a game. With
players of such vastly different skill, it is also very
sensitive to the order in which the games are played.7

For similar reasons, it is also very sensitive to imbal-
ance in the number of games played between a partic-
ular pair of players; if some player mostly has games
against weak players, this can artificially inflate its
score.

6 The source code can be found at sourceforge.net/p/tom7misc/
svn/HEAD/tree/trunk/chess/
7For example, suppose the weak player random_move has one win
against stockfish1m. If this win happens early, when the two
players have their initial Elo scores, then it doesn’t affect anything.
If it happens last, when stockfish1m has thousands of Elo points
over random_move, then it produces a very strong correction.

sourceforge.net/p/tom7misc/svn/HEAD/tree/trunk/chess/
sourceforge.net/p/tom7misc/svn/HEAD/tree/trunk/chess/


To control for these effects, I compute the maxi-
mum number n for which we have n games played
between every pair of players. I then seed each player
with an initial Elo score of 1000, and sample exactly
n games to play from each cell without replacement.
This is so that we play a balanced number of games.
I also randomize the global order of all games. Then
I do this over again, with a smaller update factor k ,
for 20 passes. I don’t know whether it’s the fact that
I reduce k over time, or that I end up with effectively
20 times the number of games played,8 but doing this
significantly reduces variance. I run the whole thing
19 times and the result is the median Elo score. I also
computed the 25th and 75th percentiles, which were
within 1–2% of the median, which is good. The Elo
scores appear in Section 4; n > 400 for this run.
Ideally, such a system would be robust against

adding new players, but this is probably not the case;
it is easy to see from the results (Figure 11) that there
are certain matchups that favor one of the players
despite its average skill. During development, I often
noticed significant swings in Elo scores as players
were added, especially before there were middle-tier
players in the mix. One way to deal with this would
be to run the Elo simulations multiple times while
randomly ablating players from the tournament; we
could then at least estimate the variance in the Elo
scores under the removal of players, which is like
adding players in reverse. I did not implement such
a thing because of oppressive SIGBOVIK deadlines.

4 RESULTS

The main use of the Elo World tournament is to
benchmark some new engine or algorithm for play-
ing chess, particularly if it is not that good [4]. There
are a few ways that we can interpret the results:

The Elo score, as described.
We can find a comparable interpolated player.

This is like the Scoville scale for measuring how spicy
something is: Some golden-tongued blind tasters are
given the pure chili oil and asked to distinguish it
from a cup of sugar water, which they of course
can do. They then dilute the chili oil 1:1 with sugar
water, and try again. The number of dilutions before
the testers cannot reliably tell the drink from sugar
water yields the score on the Scoville scale. Here, for
example, we can say that blind_spycheck performs
between stockfish1m_r63488 and _r61440, so it
is approximately a 93.75–96.875% diluted Stockfish.

We can compute aMarkov probability. The tour-
nament table can be easily thought of as a Markov
transition matrix. Imagine that there is a Champion
trophy, held by the player corresponding to some row.
Each cell in that row contains the probability that in a
game betweeen those two players, the trophy would
be passed to that player. We treat draws as choosing
one of the two sides by a coin flip (or, equivalently,
splitting the trophy in half); and for the games that
the row player wins, the trophy is retained (proba-
bility mass assigned to a self-transition). It is easy to
compute this matrix from the win/loss/draw counts
in the tournament table, and it is not sensitive to
imbalance like the Elo calculation is. Presented this
way, we can compute the stationary distribution (if
it exists, which it typically will), which basically tells

8To be clear, running 20 passes means that games can be reused,
which is not ideal.



us that after an extremely large number of games,
what is the probability that a given player holds the
Champion trophy? This tends to agree with the Elo
score, but there are a few places where it does not
(e.g. same_color has a much higher p(Champion)
score than its Elo seems to warrant).
And so finally, a table with numbers:

Player Elo p(Champion)
worstfish 188.54 0.00000071
pacifist 286.90 0.00000509

alphabetical 320.91 0.00000276
generous 342.71 0.00000306
popular 349.48 0.00000374

dangerous 349.60 0.00000291
safe 350.64 0.00000454

first_move 357.71 0.00000434
rare 361.39 0.00000323

no_i_insist 378.23 0.00000244
huddle 399.55 0.00000933
sym_180 429.94 0.00000331

same_color 430.90 0.00002590
opposite_color 432.11 0.00000293
sym_mirror_x 438.87 0.00000305
survivalist 439.03 0.00000681
random_move 439.21 0.00000462

fatalist 439.89 0.00000314
sym_mirror_y 442.50 0.00000716

reverse_starting 445.56 0.00000301
suicide_king 447.02 0.00000493

stockfish1m_r64512 462.82 0.00000297
stockfish1m_r63488 482.44 0.00000356

blind_yolo 488.97 0.00000488
. . .

. . . Player Elo p(Champion)
blind_kings 501.98 0.00000633

equalizer 504.21 0.00000653
stockfish1m_r61440 521.45 0.00001173

swarm 534.03 0.00000623
blind_spycheck 546.91 0.00002554

cccp 553.54 0.00000544
min_oppt_moves 597.04 0.00001076

stockfish1m_r57344 600.54 0.00001112
stockfish1m_r49152 752.22 0.00000737

chessmaster.nes_lv1 776.15 0.00002055
stockfish1m_r32768 976.20 0.00003025

chessmaster.nes_lv2 989.21 0.00012094
stockfish1m_r16384 1277.73 0.00012509

stockfish0 1335.69 0.00008494
stockfish5 1644.63 0.00070207

stockfish1m_r8192 1690.15 0.00152052
topple10k 1771.65 0.00179298

stockfish10 1915.23 0.00257648
stockfish15 1952.93 0.00310436

stockfish1m_r4096 2020.25 0.00886928
stockfish20 2139.47 0.00721173

topple1m 2218.71 0.01091286
stockfish1m_r2048 2261.50 0.03132272
stockfish1m_r1024 2425.72 0.06759788
stockfish1m_r512 2521.78 0.11122236
stockfish1m_r256 2581.97 0.15364889
stockfish1m_r128 2609.45 0.17861429
stockfish1m_r64 2637.78 0.20508090

stockfish1m 2644.10 0.21523142

5 CONCLUSION

Shout out to the Thursd’z Institute and anonymous
commenters on my blog for discussion of players
and suggestions. Several ideas were suggested by
multiple people, increasing my confidence that they
are somehow canonical.



The author would also like to thank the anony-
mous referees of the Special Interest Group on Baf-
flingly Overdone Ventures In Chess journal for their
careful reviews.
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Fig. 11. The matrix of outcomes for all players. There is
too much data to print, so we just have a bunch of col-
ors, mostly because it looks rad. If you don’t have a color
printer or TV it will probably not look rad. Rows indicate
the player playing as white, from worst (worstfish, top)
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with the black pieces, in the same order from left to right.
Green indicates a cell that is predominately wins (for
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smooth gradient where better engines regularly beat even
slightly weaker ones, but start to produce draws at the
highest levels. They consistently destroy weak engines; a
cell with an × indicates that it only contained wins or only
contained losses (not even draws).
At the low end, there is a large splat of matchups that
mostly produce draws against one another, but can consis-
tently beat the weakest tier. In the top-left corner, a square
of blue draws from low-ambition play; these aggressively
bad players almost never win games, even when playing
each other.
Microtexture outside of these broad trends comes from
matchups where the player is unusually suited or weak
against that particular opponent. For example, the bright
red cell on the diagonal near the center is cccp vs. cccp;
this determinisic strategy alwasy wins in self-play as black.
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