
COLOR- AND PIECE-BLIND CHESS

DR. TOM MURPHY VII PH.D.

1. Impressing humans

What better way for humans to impress each other with
their brains, especially in movies, than to play chess—and to
shout dramatically CHECKMATE! upon surprise-checkmating
their opponent? Well, one way is to play chess while disadvan-
taged somehow, for example, by punching each other in the
face repeatedly during the game to impair brain function (see
Chess Boxing [8]). Another common distraction is to play a
multitude of games against many opponents at the same time,
in a so-called “simultaneous exhibition.” The idea is that this
is more challenging because of the need to maintain mental
state for so many games at once, whereas your opponents only
need to maintain state for one game. In truth, simultaneous
exhibitions easily fall to a “man-in-the-middle attack.” If the
purported genius simply creates a perfect bipartite matching of
the games played with the white pieces and the games played
with black, he can mechanically forward moves between these
pairs of boards. This requires only constant state (see next
section) per pair of games, and guarantees an even score for
the exhibition. So that’s not very impressive.

Another disadvantage that humans sometimes use to im-
press each other is a blindfold (worn over the eyes). In this
predicament they only hear the opponent announce moves and
must imagine the position on the board in their mind’s eye,
both for the sake of remembering it and while exploring po-
tential moves. Disadvantages can be combined, such as in the
final scene of the 1988 documentary Bloodsport where Jean
Claude van Damme is blinded by an illicit foreign substance
during the final martial art battle.1

2. Impressing computers

In contrast, it is much more difficult to impress computers or
impress people with computers. When it comes to computers
playing chess, largely, the jig is up; it is now easy for chess pro-
grams, running on consumer hardware, to defeat the strongest
human players. It is well known that striking a computer actu-
ally fixes it, so Chess Boxing becomes trivial. Blindfold chess is
the natural interface for a chess computer; it is actually much
more difficult to have the computer interpret the opponent’s
move by visually studying a physical board!

Playing multiple games simutaneously is an easy extension
of playing a single game, although in principle the scale of

Date: 1 April 2019.
Copyright c© 2019 the Regents of the Wikiplia Foundation. Appears

in The Journal Of LaTeX Class Files with the insufficient material of the

Association for Computational Heresy; IEEEEEE! press, Verlag-Verlag
volume no. 0x40-2A. 1 tempo.

1JCVD does not play chess on camera, but it is implied that he is also
holding a simultaneous exhibition between rounds in a different room of

the underground Hong Kong illegal karate complex.

such a thing could still be impressive. This is also impres-
sive to other computers, who are largely concerned with filling
up their memories with efficiently coded data. With a mod-
ern chess engine, it is easy to scale to an arbitrary number of
games, since the exhibitor can make progress by observing one
of the boards, computing a strong move, and playing it; this re-
quires O(1) space because all of the state is stored externally
in the exhibition itself. However, we run the risk of losing
the tournament (other players may be yet stronger comput-
ers). The man-in-the-middle attack remains an efficient way
to minimize loss (ensuring an exactly even score). The sim-
plest way to do this is to explicily generate a perfect bipartite
matching over the n games G being played. This consists of
n/2 pairs 〈Gw, Gb〉 (where we play as white against Bob and
black against Walice, respectively). Since each game starts in
the starting position, this is very easy; we can just assign the
matches consecutively. Along with each pair we also record
which of the following states we are in:

(1) We are waiting for a move from Walice (our white
opponent)

(2) We have seen a move from Walice, which is .
(3) We are waiting for a move from Bob (our black oppo-

nent)
(4) We have seen a move from Bob, which is .

If in State 1, we just watch Gb until Walice makes a move,
then record it and proceed to State 2. We consume the move
and move to State 3 by playing that move in Gw against Bob
(where it must be our turn). We can immediately seek out that
game or wait until we naturally come upon it. However, we
should only approach Gw when the pair of games is in State 3,
etc., otherwise we will not have a move to play.

There are n/2 pairs, with two bits for the state, no more2

than log2(64× 64× 4) = 14 bits for each move (source square,
destination square, and 2 bits to distinguish promotion to
queen, rook, bishop, or knight). However, we also need to
store the matching of Gw to Gb; this can be done with a pair
of indices (or e.g. memory addresses) but unfortunately, this
requires log2(n) bits to represent. So overall this approach re-
quires O(n log(n)) space to play a simultaneous exhibition of
n games.

It appears to be possible to reduce the space usage per game
to a constant. In order to perform a man-in-the-middle attack,
we need a perfect matching between the white games and black
games. It is not essential that the matching be stable over
time; for example if we are forwarding moves between Walice
and Bob, and between Waluigi and Bario, and these games
happen to transpose to the same position, then it works just
fine to switch to forwarding between Walice and Bario; Waluigi
and Bob. So, rather than store the matching explicitly, we can
reconstruct it from the stored state at each step.

Let’s think about the process of forwarding the moves from
our white opponents to our black opponents; the reverse is
of course symmetric. The first step will be to wait for the

2There are only 1792 pairs of squares between which pieces can ever

move (Section 5.3.1), so 11 + 2 bits suffices, with some added complexity.

white opponents to make their moves, and then copy these
n/2 positions (not moves) into a vector in memory.

The black opponents are waiting for a move from us. Next,
we’ll copy their n/2 positions into memory, aligned with the
n/2 positions already present. Let’s say that the relation that
defines a legal move in chess is

B
m→ B′

where B is the position before the move m, and B′ is the
resulting position. Our goal is to align the games such that B′

(a position copied from our white opponent) is aligned with B
(a position pending a move for our black opponent) in memory;
this will represent the perfect matching. Computing m from

B and B′ when B
m→ B′ is easy (and unique), so this allows

us to read off and play the move for each row.
By invariant, it will be possible to produce such an align-

ment. For example, the first time we do this, each B will be the
starting position, and B′ will be a legal move made by white
from the starting position. Any alignment will work. Let’s say
that just one of the white opponents played 1. d4, resulting in
B0; then one black opponent will make a legal response to this
(say 1. . . . Nf6, giving B1). Then B1 can be B′ for the next
round, which we can align with B = B0, and so on.

The only tricky thing is figuring out which boards go with

which. Although if B
m→ B′ it is easy to deduce m, it is not

possible to compute B from B′, or even from B′ and m. This

is because we may have both Ba
ma→ B′ and Bb

mb→ B′ with
Ba 6= Bb. For example with B′

8kZ0Z0Z0Z
7Z0Z0Z0Z0
60Z0Z0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0Z
3Z0Z0Z0Z0
20Z0Z0Z0Z
1J0Z0Z0Z0

a b c d e f g h

. . . we could have Ba and Bb be

8Nj0Z0Z0Z
7Z0Z0Z0Z0
60Z0Z0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0Z
3Z0Z0Z0Z0
20Z0Z0Z0Z
1J0Z0Z0Z0

a b c d e f g h

8Rj0Z0Z0Z
7Z0Z0Z0Z0
60Z0Z0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0Z
3Z0Z0Z0Z0
20Z0Z0Z0Z
1J0Z0Z0Z0

a b c d e f g h

Both of which can precede B′ (the move is even the same:
Kxa1). So it is not enough to greedily assign edges in our
perfect match; if we choose the edge Bb to go with B′, we
might later find B′

2:

8RZ0Z0Z0Z
7ZkZ0Z0Z0
60Z0Z0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0Z
3Z0Z0Z0Z0
20Z0Z0Z0Z
1J0Z0Z0Z0

a b c d e f g h

. . . and have no possible matching board, since it cannot legally
follow Ba.

Fortunately, we know that there exists a perfect matching
(assuming all players are playing legal moves) and we can tell
if we found one (i.e., we didn’t get stuck). So, one strat-
egy that works is to choose randomly when there is some
ambiguity, and start over from the beginning if we ever get
stuck. In practice this will be pretty efficient, since convergent
board states are unusual. We only need a single pseudoran-
dom pool for the entire process, so it can be O(n) bits; this
seems easily enough to generate all possible permutations of
n/2 items. Even 22n grows much faster than n!. If we don’t like
the random approach, I believe it is also possible to compute
next_permutation in constant space; so we can just explicitly
try all orderings for B′ (this takes exponential time).

Once we have paired up each B and B′, we simply compute
the move (which we now know exists) and play it in that game.
We then wait for the black opponents to play their moves, copy
the resulting board states into our vector and repeat the above
process (but flipping “black” and “white”).

Although this is more involved than the previous approach,
and may take exponential time, it allows us to play against n
simultaneous opponents using O(n) space!

2.1. Board representations. The actual space used per game
is primarily the representation of a chess position, plus a few
bits for bookkeeping. So, representing boards compactly gives
us a way to increase the number of simultaneous games we can
play for a given storage size.

Mainly, we need to store the pieces and their locations.
There are a few other bits, like whose turn it is (1 bit), whether
each player can still castle king- and queen-side (4 bits), and
whether and where an en passant capture is possible (4 bits).3

With 64 squares, six pieces for each of the two sides, plus the
empty square, a straightforward representation of the board
uses 64 × 4 = 256 bits. The Thursd’z Institute considered
more compact representations [2]; one nice choice works as
follows:

Start with a single 64-bit mask which indicates, for each
square on the board, whether it contains any piece. Note that
there can only be up to 32 pieces on the board. To tell what
these pieces are, we then follow with 32 four-bit records; these
indicate the piece’s color and type.5 With the 9 bits of extra

3Technically, we need to store a lot of additional information with the
board in order to completely implement the rules of chess.[1] The trickiest

of these involve the rules for draw by repetition, which make reference to

the history of the game (See Footnote 1 in Survival in chessland [6]) and
seem to require storing all previous board states. Fortunately, if we are

being this picky, then we also know that the length of a chess game is
bounded by a constant: Rule 9.6.2 ends the game in a draw if both players

have made 75 moves without a pawn move or capture,4 so it suffices to

store the 75×2 most recent (half-)moves. This sucks so most people don’t
do it (for example, FEN notation only gives the number of such moves,
and so cannot implement the draw by repetition). On the other hand,
if we insist, then this may give us a simpler route to a constant-space

exhibition, since the B
m→ B′ relation is probably reversible with such

information.
4These are two types of moves that make it impossible to formally

repeat a position that preceded them. Castling also has this property,

but doesn’t count because it is a “secret move.”
5Since only 32 of the 64 bits can be set, you could do slightly better by

representing
(64
32

)
in ∼ 61 bits. When fewer than 32 squares are occupied,

we can use a record containing e.g. a third king (otherwise impossible)
to indicate that we should ignore the remaining bits. However, this gets
vastly more complicated for only 3 bits of savings.

state above, this totals 64 + 32 × 4 + 9 = 201 bits. There
is some slack in the representation, because there are only 12
actual possibilities for a piece but we can indicate 16 with 4
bits. It is great to abuse this slack to save bits; for example, we
can store a new type of rook that is still able to castle (it can
only be in the corners and thus also indicates its own color),
eliminating the 4 castling bits. We can similarly introduce
an en-passantable pawn, saving the 4 bits of en passant state;
this piece can only be in ranks 4 or 5, so it also indicates its
color. We can also have a “king whose turn it is” for each
side, saving the side-to-move bit. This totals a nice round
64+32×4 = 192 bits.6 This would allow approximately an 11
billion-game simultaneous exhibition in RAM on my desktop
computer.

So now comes the main idea of the paper, which is also
spoilered in the very clear paper title. What if we represented
boards only as the 64-bit mask telling us what squares are
occupied? The encoding is very lossy, of course, but it often
contains enough information to deduce the state of the board.
For example, can you tell what position this is?

8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

Correct! It is

8 nsblkarm
7 opopopop
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0ZPZ0Z
3 Z0Z0Z0Z0
2 POPO0OPO
1 MRABMRLK

a b c d e f g h

after 1. Nf3 Nf6 2. e4

Ng4 3. Bc4 Ne5 4. O-

O Ng6 5. Kh1 Rg8 6.

Nc3 Nh8 7. Qe2 Nc6 8.

Rb1 Rb8 9. Nb5 Nb4 10.

Rd1 Nd5 11. Qf1 Nb6

12. Qg1 Na8 13. Nbd4

Nb6 14. Rf1 Na8 15. Be2

Ng6 16. Bd1 Nh8 17.

Nb3 Ng6 18. Ne1 Nh8 19.

Na1

3. Color- and piece-blind chess

So this is kind of like blindfold chess, but for computers!
Instead of being blind to the board, and only relying on our
memory (trivial for computers), we’ll only be able to see where

6Since this is SIGBOVIK, I am freed from the burden of comparing

related work. I did however read the rather bad Wikipedia article on the
topic [7] which describes a Huffman-based encoding that uses a “maxi-
mum of 204 bits, and often much less.” This also includes a 7-bit 50-move
counter (but you really need to implement a 75-move counter; 50 moves
only allow a player to claim a draw) so should be compared as 197 bits.

But the article also contains many bugs, like the misconception that there
can only be four total rooks (pawns are allowed to promote to rook). So
the approach described here is both more efficient and more correct.

pieces are positioned on the board, but not what type or color
they are. Of course, we also have to prohibit the computer
from simply remembering the board, so the algorithm must be
stateless. Specifically, we want a function

makemove : uint64→ move list

that makes a move from a single board position, represented
just as 64 bits. This is a single move; the move list represents
our preference for the move to make in descending order, and
we commit to the first move that is actually legal. It does
not work well to insist that the function return a single move,
as it will often be the case that the board is misinterpreted
and a move is in fact illegal; forcing forfeit7 would mean that
almost all games end in forfeit, which is boring. On the other
hand, allowing the function to try again upon learning a move
is illegal would allow it to interactively “interrogate” the board
state somewhat.8 This seems counter to the spirit of color- and
piece-blind chess, so we instead require the function to rank
all moves ahead of time.

4. Unblinding the board

I went about this by building a function that “unblinds” a
board; it has type

unblind : uint64→ position

This function is natural for machine learning. It is easy
to generate copious training data from actual games by sim-
ply blinding positions into their corresponding 64-bit num-
bers; I just randomly sampled 100 million positions from Febu-
rary 2017 on lichess.org.

I repurposed the custom neural network code from my semi-
nal paper Red i removal with artificial retinal networks [3] after
discovering that artificial retinal networks are actually isomor-
phic to neural networks. The main advantage of this code is
that it allows for sparse networks, but the real reason to use
it is that I would rather spend dozens of hours debugging my
own code, pay a larger electric bill, and get worse results in
the end, than to spend a short while trying to get someone
else’s probably-very-good neural network training package to
compile.

The structure of the network is as follows. The input layer
is 64 nodes, one for each of the 64 bits, with each node set to
either 1.0f or 0.0f. Three hidden layers of size 1024, 12288,
and 567 do the neural magic. The output layer is 837 nodes;
the bulk of which is a “one-hot” representation of the predic-
tions for the 64 squares, each with 13 possible contents (black
or white, six pieces, or empty). This is 64 × 13 = 832 nodes.
Then four nodes to predict the four castling bits, and one to
predict the current side to move. This model does not predict
the possibility for en passant capture, nor move counters or
position repetition. This will not be its main source of disad-
vantage!

I trained the network in two phases, first starting with a
densely connected one (model size 160 MB), and then after I
get fed up with how slow training was, a “vacuumed” version of
the network where I removed edges with low absolute weights

7FIDE rules state that the second attempt at an illegal move results

in forfeit (7.5.5).
8Similar to Kriegspiel [9], although in that game at least one’s own

pieces are known!

(model size 5 MB) to continue training. Removing edges based
on an absolute weight threshold is very unprincipled (since a
downstream edge can magnify a contribution arbitrarily) but
I did it anyway.

Everything was trained on a single GPU, though a fairly de-
cent one in 2018, the EVGA GeForce GTX 1080 “FTW” (re-
ally), using OpenCL. Biases were initialized to 0 and weights
with a Gaussian of mean 0 and standard deviation 0.025. In
the first phase, there were 64 examples per round, and af-
ter vacuuming, 2048. The round learning rate αr started at
0.1 and descended linearly to 0.002 over 500,000 rounds; and
the learning rate when updating weights (for each example) α
is αr/examples_per_round. In no way am I recommending
these parameters. Fiddling with the parameters to make it do
its black magic or alternately carom off to a sea of NaNs or
zeroes is for sure the worst part of neural networks. Indeed,
I initially started with the classical sigmoid transfer function,
but “upgraded” to the “leaky rectified linear” function

(p < 0) ? p× 0.01 : p

after getting fed up with sigmoid weights caroming off (see
“vanishing gradient problem” and/or “exploding gradient prob-
lem”). The final model was trained over 339,885 rounds on 223
million examples. It did not appear to show signs of improving
for several days before I terminated it.

4.1. Statistical evaluation. The unblinding component can
be evaluated on its own, by running it on examples sampled
independently of the training set. The model outputs a score
for each possible contents of each square; we simply discretize
to the highest-scoring one (same too for the predicted castling
state and turn). Over 50,000 examples, these were the results:

9,584 predicted boards were exactly correct (19.17%). There
were a total of 161,166 piece mistakes, which is an average of
3.22 per board. This is wherever we predict a square’s contents
incorrectly. There were only 1630 castling status mistakes, an
average of 0.03 per board (there can be up to four mistakes
per board). This is probably because when the king and rook
are in their starting squares, castling is almost always still al-
lowed. In 19,014 boards, we mispredicted whose move it is
(38%). This appears to be the most difficult thing to predict,
which is not surprising.9

4.2. Subjective evaluation. The unblinder must make mis-
takes since the 64-bit representation is ambiguous. Subjec-
tively, the unblinder makes reasonable mistakes. It is excellent
at common openings, usually getting these exactly correct. On
the other hand, it is fairly bad at sparse endgames, where it is
difficult to tell a pawn from a rook from a king. It is terrible at
unlikely positions that can be confused for likely ones. If you
are playing against it and know how it works, it is easy to trick
it by doing something like capturing one of its starting-position
pawns with your queen; nobody does this in real games (be-
cause the queen can be immediately recaptured), so the square

9Prior to “vacuuming”, the 160 MB network actually performed
slightly better than the final 5 MB network, with 21.20% of boards ex-

actly correct, and an average of 3.12 mistakes per board. This suggests
that the model may only be doing a limited amount of generalization,

instead mostly memorizing board positions. Representing the 223 million

examples seen exactly (using our best board representation described in
Section 2.1) would take 42.8 GB, so at 5 MB at least the data is repre-

sented compactly, if also rather lossily.

is predicted as a pawn and the queen “disappears” to the un-
blinder (Figure 1). Having an invisible queen in your camp is of
course very dangerous. Resolving ambiguities in favor of more
likely positions is the right thing for the model to do, so this is
just an inherent flaw with the decomposition of the problem.
There are some ways we can account for this (Section 5.2).

8rmblkans
7opo0ZpLp
60Z0Z0Z0Z
5Z0Zpo0Z0
40Z0ZPZ0Z
3Z0Z0Z0Z0
2POPO0OPO
1SNA0JBMR

a b c d e f g h
(a)

(b)

Figure 1. (a) Position after 1. e4 e5 2. Qg4
d5 3. Qxg7; note the white queen strangely
on g7. (b) The bitmask for this position and
the unblinder’s prediction. The queen “dis-
appears” after Qxg7, because unblinding pre-
dicts it to be one of black’s own pawns—far
more likely in that square.

A few things are distinctly disappointing about its perfor-
mance. Even outside of “likely” positions, it usually predicts
that pieces on black’s side of the board are black, and vice
versa (Figure 2). This makes sense, but suggests serious lim-
itation on using the prediction to play chess. Less forgivably,
it sometimes predicts more than one king per side (or zero),
which is always wrong. Actually, an early version had this
problem in spades, frequently predicting two or three kings.
Upon debugging, I had simply made the noob mistake of print-
ing both King and Knight with the letter “K.” Ha! It often
predicts the “wrong” number of bishops (etc.), or places them
on the same color. This is technically possible through pro-
motion, but usually a bad guess, since promotion is relatively
rare, and moreso promotion to a piece other than a queen.
An approach that might handle this better (but may have dif-
ferent downsides) would be instead to predict the “fates” of
the 32 initial pieces [6]. The fate of a pawn includes what if
any piece it has promoted to, but this is not necessary for the
other pieces. This would require that the model only predict
a single location for each king, among other things. However,
this would require a much larger output layer (32 pieces can
move to 64 squares, plus promotion) and it is not always clear
how to interpret its value into a position (for example, if two
pieces are predicted strongly to be on the same square).

5. Playing blind

Once we have predicted a board state, we can play with it.
The simplest way to do this is to use a strong chess engine to

Figure 2. What the model predicts
(in single-king mode; Section 5.1) for
0xFFFFFFFFFFFFFFFF, the board with all bits
set. This is an impossible position, but it
gives some idea of the model’s biases for each
square. Notably, most of the pieces on each
half of the board have a single color. This
makes sense, but also suggests substantial
limitation. When single-king mode is off, the
bottom right king is predicted as a white rook.

pick a move for the position. Here, I use Stockfish with a node
budget of 1 million nodes, which takes about 1 second of CPU
time per move on my computer. There are some complications:

• Frequently, the unblinded board will not match the
true position, and Stockfish will choose a move that is
illegal. So, as discussed before, we actually return a
prioritized list of moves. For this first experiment, we
just return the move Stockfish recommends, followed
by all other moves ordered randomly.

• Stockfish is a very strong engine, and in my opinion
the code is generally good, but it is very sensitive to
bad FEN (the notation used to give it a position to
evaluate) strings. Given a bad string, like one that
says castling is possible when the king isn’t in its home
square, often crashes the engine. So we need to make
sure to actually pass valid positions. I accomplish this
by making the following modifications to the predicted
board:

– If a castling bit is set, but castling is not possible
due to the position of the king or rook, clear the
bit.

– Set the side-to-move to be the correct actual value.
This uses the unblinded state, so is superficially
cheating. But note that if we get the side wrong,
then Stockfish’s move will always be illegal: Moves
are specified as a source and destination square,10

and so the source square of Stockfish’s move would
always be a piece of the wrong piece’s color. So
this is equivalent to (but twice as efficient as) run-
ning stockfish twice, one for each side, and prior-
itizing the predicted side’s move first.

This won’t fix all positions, for example, if the white
and black king are adjacent to one another in mutual
check. If an irreparable problem is detected, then I
just return a uniformly random move list.

10Plus promotion piece. Castling is represented as a two-square move

of the king.

It is easy to beat this chess engine, by tricking it as in
Figure 1, although this involves unnatural moves, so it may
only apply if you know how it works. Measuring how well it
plays in an absolute sense is a subject of some interest, so I
wrote a separate paper about that [5]. This algorithm, called
blind_yolo, had an Elo World score of 489 ± 2. It beats a
purely random player with a score of 101 wins, 27 losses, and
389 draws. Making moves purely at random is one of the few
fair comparisons, since the random strategy also works with
color- and piece-blind chess.

5.1. We three kings. When evaluating the first version I
found that it was predicting a disappointingly high number
of illegal positions in practice, which was causing us to fall
back on making random moves, which is mostly boring. The
second version reduces the rate of illegal positions due to too
many or too few kings [4].

The model predicts a score for each type of piece in each
square, and we do not have to necessarily interpret it by always
taking the highest-scoring piece. This version first finds the
two squares with the highest scores for the white king, and
same for the black king. We take two in case the same square
is predicted for both. Then this square gets one of the kings
(whichever has higher score) and the other king goes in the
highest-scoring unclaimed square. The rest of the squares get
the highest-scoring prediction as before, but we never predict
kings for them.

This change just affects the unblinding process, so we can
directly evaluate its accuracy. It gets 19.28% of positions ex-
actly correct (slightly better), with an average of 3.26 piece
mistakes per position (slightly worse). This is expected; we
exchange local mistakes (each was trained independently to
minimize its local error) for global correctness (which is not
taken into account at all during training).

This version, called blind_kings, performs a small amount
better than blind_yolo (63 wins, 45 losses, 412 draws). It
had an Elo World score of 502± 3.

5.2. Spy check. Say blind_kings is playing as white; it re-
mains easy to fool it by moving black pieces into white’s camp,
since they are usually then predicted to be white pieces. We
can defend against this somewhat. Since it is illegal to capture
one’s own piece, there is little risk in trying; if it is indeed our
own piece then the move will be rejected, and if it is not our
piece, then capturing is good for two reasons: One, we capture
a piece, and two, we avoid having Stockfish make a move in
this incorrectly predicted board. (Of course there are many
reasons why eagerly capturing a piece can be a bad idea, but
at this level of play, an edge in material is likely worth it.)

There is one subtlety here. Above we argued that it was safe
to use the actual side-to-move instead of the predicted one;
but here it would not be equivalent to do so. Instead, we first
prioritize all apparent spy-check moves where the predicted
source piece matches the predicted side-to-move, then we try
the opposite. (Ties are broken by preferring to capture with
a lower-value predicted piece, and then randomly.) Due to
this, there is some additional chance that we end up making
an especially dumb move because we both mispredicted the
side-to-move and the identity of some pieces.

This version, blind_spycheck, works significantly better
than blind_kings. It has an Elo World score of 547 ± 1,

somewhere between a 93.75–96.875% dilution of stockfish1m
(the third best non-engine player).

5.3. Future work. The predicted board often expresses un-
certainty about some squares, which could be thought of as
probabilities. A principled improvement would be to try to
find moves that are good in expectation, that is, integrated
over all possible boards in proportion to their predicted prob-
ability. A good approximation might be had by sampling a
bunch of boards according to the predicted distribution, and
then using Stockfish to score the top k moves for each; we can
then order moves by their expected score. Unfortunately, it is
not easy to efficiently get Stockfish to generate scored moves
for k 6= 1. Even with k = 1, this approach would be slow,
taking about a second for each (distinct) sampled board. So I
did not try it, at least not before submitting this paper.

5.3.1. No, u r a lnetwork. I initially considered trying to solve
this whole problem with neural networks. The current best
known engine in the world (AlphaZero) at least uses a neural
network. The biggest advantage would be that it would nat-
urally be able to consider multiple moves under uncertainty
about the board state, as just discussed, without any par-
ticular extra logic. My plan was to make multiple different
components that could be evaluated separately, starting with
the unblinder described, followed by a unit that predicts legal
moves, and then a unit that takes these two (and also the 64-
bit blinded mask if it likes) and scores each move. Predicting
a legal move is also a natural function for machine learning; a
move can be given just as a source and destination square.11

Many pairs of squares are always impossible (e.g. no piece
can ever move from A1 to B8); so there are only 1792 poten-
tial moves to predict. However, training a reasonable unblin-
der took longer than I expected, and the legal move predictor
never really worked that well (it has a harder job), so I just
settled for basing it off the single unblinder unit. Can you do
better?

6. Conclusion

I would like to thank the little people (pawns) and the
author- and content-blind anonymous referrees.

References

[1] FIDE handbook – E.I.01A. Laws of chess, 2017. www.fide.
com/component/handbook.

[2] Jim McCann, David Renshaw, Ben Blum, William Lovas,
and Tom Murphy, VII. Chessboard representations, De-
cember 2018.

[3] Tom Murphy, VII. Red i removal with artificial retina
networks. In A record of the proceedings of SIGBOVIK
2015, pages 27–32. ACH, April 2015. sigbovik.org/2015.

[4] Tom Murphy, VII. CVE-2018-90017117. In A Record of
the Proceedings of SIGBOVIK 2019. ACH, April 2019.

[5] Tom Murphy, VII. Elo World: A framework for bench-
marking weak chess algorithms. In A Record of the Pro-
ceedings of SIGBOVIK 2019. ACH, April 2019.

11There are also four choices for promotion when moving a pawn into

the last rank. It is always the case that if any promotion is legal, all choices
are legal, so this does not need to be encoded in this phase. Also, at this

level of play, always promoting to queen is a very safe simplification.

[6] Tom Murphy, VII. Survival in chessland. In A Record of
the Proceedings of SIGBOVIK 2019. ACH, April 2019.

[7] Wikipedia. Board representation (chess). https://en.

wikipedia.org/wiki/Board_representation_(chess).
[8] Wikipedia. Chess boxing. http://en.wikipedia.org/

wiki/Chess_boxing.
[9] Wikipedia. Kriegspiel (chess). https://en.wikipedia.

org/wiki/Kriegspiel_(chess).

