
 Badness 0

 (Knuth’s version)

Dr. Tom Murphy VII, Ph.D.
March 2024

It has become clear to me that many people walk
this Earth completely unbothered by incorrect de-
tails. For example, they are unconcerned when a
hyperlink includes a surrounding space charac-
ter. It doesn’t upset them when the screw heads
on a light switch wall plate are not all lined up.
They didn’t notice that the rules of Wordle’s “hard
mode” are simply wrong. They care as much as the
phone’s autocorrect (none) about the difference be-
tween “its” and “it’s.” When someone asks, “Will
you marry me?” and they think “Oh my god!” it’s
not because the proposer probably should have
used the subjunctive would.

I am... not like this. If a character in a TV commer-
cial is handling a coffee cup but I can infer from
its moment of inertia that the cup does not con-
tain any liquid, I immediately lose suspension of
disbelief and will not purchase the product fea-
tured in the commercial. I literally projectile vomit
if Auto-Motion Plus is enabled on a television
in the hotel I’m staying in, even if the TV is not
turned on, or if someone misuses the word “liter-
ally.” If I see a paragraph missing a period at its
end on Wikipedia, I will spend dozens of hours
writing software to organize and semi-automate
a distributed effort to fix all the missing periods
on Wikipedia.[2] And worse, each time I learn of a
new type of mistake, I am forever cursed to notice
that mistake

Seriously: One time I found myself spell-correcting
someone else’s lorem ipsum text in a slide. It said
“lorem epsom,” which is funny. I think about that
incident all the time. The person that wrote the
slide probably thinks about things like leveraging
synergy, generative AI, metaverses, blockchain 3.0,
snackable content, being eco-green, and so on, with-
out it occurring to him that these things could have
nuance and meaning separate from their names.
He has probably never even read the Wikipedia ar-
ticle on Lorem Ipsum. He is successful and rich.

Another successful person is the congressperson
Bill Cassidy. Criticizing a proposed bill that would
reduce the standard work week in the US by 8

hours, from 40 to 32, this senator says,

Sen. Bill Cassidy of Louisiana, representing the
______ party, said paying workers the same
wages for fewer hours would force employers
to pass the cost of hiring more workers along to
consumers.

 “It would threaten millions of small businesses
operating on a razor-thin margin because they’re
unable to find enough workers," said Cassidy.
"Now they’ve got the same workers, but only for
three-quarters of the time. And they have to hire
more.”

Actually, that’s not exactly the quote, but I needed
to make it look nice.[3] And this is not a paper about
politics, but let’s just say you can guess what word
goes in the blank.

Anyway, OKAY, first of all, razors famously have
high margins. It’s like the worst possible metaphor
here.

For another thing: This guy mixes fancy typo-
graphic quotes and ASCII ones.

But the main thing I want to talk about is: What?
No! 32/40 is four fifths, not three quarters. This is
not, like, complicated math. It uses some of the
world’s smallest integers. Everybody knows that
the work week is 40 hours, and that a work day
is 8 hours, and that the proposed bill reduces it
by one day, giving four of five days. I don’t really
mind if someone makes an error in calculation
(well, I do mind, but I am certainly prone to doing
it). The infuriating realization here is that this per-
son does not even think of “three-quarters” as a
kind of thing that can be right or wrong. He says
three quarters because it makes smaller number
feelings. You could imagine him having the conver-
sation (with me, perhaps): “You say four-fifths, I
say three-quarters.” Me: “But it is four fifths. And
why are you always hyphenating it?” Him (smil-
ing patronizingly): “I guess we just have to agree
to disagree.”

The opposite of this person is the hero called Don-
ald Knuth.

I’m not saying that Donald Knuth isn’t successful
and rich. According to the website “Famous Birth-
days,”[4] which is probably generated by AI or at
least by people whose economic output is mea-
sured in a count of words, and words whose value
is computed by their ability to drive ad clicks, Don-

ald Knuth is “is one of the most popular and rich-
est Mathematician who was born on January 10,
1938 in Wisconsin, Wisconsin, United States. Math-
ematician and engineer who was arguably most
recognized as the Professor Emeritus at Stanford in
Palo Alto, California.” As one of the richest Math-
ematician from United States, according to the
analysis of Famous Birthdays, Wikipedia, Forbes
& Business Insider, “Donald Knuth’s net worth
$3--5 Million.*”

I suppose it is arguable that he is the Professor
Emeritus. And it is very likely true that he is
the only popular and rich mathematician born
on that specific day in Wisconsin, making the
singular “Mathematician” perhaps a technical
master-stroke. But more likely this is just an amus-
ingly dense series of imprecisions. The asterisk of
course does not have any referent on the page.

What I mean when I say that Donald Knuth is the
opposite of this person is that Knuth is interested
in unpacking a single unnecessary detail, recur-
sively, until it is completely solved. According to
the website Famous Bibliophiles, one day Donald
Knuth set out to write down the entire subject of
computer science in a single book called The Art
of Computer Programming. As he was doing so,
he realized that describing computer algorithms in
a lasting form would require a programming lan-
guage that was not subject to constant revision, so
he invented the MIX instruction set for an idealized
computer. After writing some 3000 pages out in
longhand, he found that it was impractical to print
them all in one book, so the plan expanded to be
multiple volumes. Then when he got a draft of one
of the books back from the typesetter, he was un-
happy with the details of the typography, and so
he paused his work writing down all of computer
science to create some new computer science: First
an algorithm for determining where to place line
breaks in order to make text optimally beautiful,
then algorithms for hyphenating words, then gen-
eralizations of these for typesetting mathematics,
and then a full computer typesetting system that is
still in wide use today, called TeX. Along the way
he was unsatisfied with the specific typefaces that
existed in the world, and unsatisfied with the way
that typefaces were described at only one weight,
and so he created the parameterized METAFONT
system and several new typefaces. Undeterred by
these excursions, he returned to his original task
of writing down the entirety of computer science,
using all the technology he had built. By the time
he finished this, much more computer science had

been invented, including by his own hand, and so
he needed to rework MIX for the next volume, and
update the first. The revised plan of eight volumes
remains the intention in 2024. However, he found
that the volumes were getting rather long, and be-
gan releasing portions of volumes (“fascicles”).
So far, Volume 4 has been partially published as
books 4A[5] (fascicles 0–4; 912 pages) and 4B[6] (fas-
cicles 5–6; 736 pages). It is unknown how many
more episodes remain in Volume 4. I expect that
every conversation that Knuth has with his editor
goes like this. Editor: “Hey, Donald, I hope you’re
well. Just wondering if you have an update on
when 4C will be ready? Or any more icicles?” Don-
ald E. Knuth: “I am working diligently on fascicles
for Volume 4C. As I’ve mentioned in the past, it’s
impossible to tell how long it will be, since mathe-
matics does not obey the rules of project manage-
ment.” Editor: “I just need a date to tell the publish-
ers.” Donald E. Knuth: “Like I’ve said, any date
would be very low confidence, other than the fact
that it will be in the future.” Editor: “I just need a
date.” Donald E. Knuth: “Would you like me to
say a date, knowing that it’s a very low confidence
guess, and that I would be extremely likely to miss
that date, or even deliver early?” Editor: “Early!
Now we’re talking.” Donald E. Knuth: “What use
is the date if you’re excited about the possibility
of it being early, relative to some unknown date?”
Editor: “I just need a date for the publishers.” Don-
ald E. Knuth: “2030.” Editor: “Thanks Donald,
you’re the best!”

Volume 5 is estimated to be ready in 2030, when
Knuth will be 92.

That’s a large amount of language!

Nightmare on LLM street

Then we have Large Language Models.[7] One of
the irritating things about LLMs is that they are so
buzzwordy, but unlike most buzzwordy trends,
they are actually substantive. They produce re-
markably fluent text. With no additional training
they frequently beat purpose-built models that
have been in development for decades. They gen-
eralize to completely new situations.

So many things about “AI” distress me. Dolor sit
amet! I worry about the devaluation of human cre-
ativity, about large-scale disinformation and spam
ruining the beautiful library of knowledge that hu-
mans have created, about extreme concentration
of wealth. And yes, I worry about competing with

AI. Being able to work tirelessly and thousands of
times faster than humans is a huge competitive ad-
vantage. Of course, I find some solace in the signif-
icant possible upsides. It might help us solve hard
problems like climate change and AI. But even in
the best scenarios we will not be able to ignore it:
Even if it never gets as smart and precise as Knuth,
it’s already too economically useful in its Lorem
Epsom state (just like Lorem Epsom himself).

On the other hand, the technology is pretty neat
and lends itself to some nice abstractions. I love
playing with words. So one of my side quests is
to masticate this whole scenario by experiment-
ing with LLMs in practical and impractical appli-
cations, and to try to make it fun (for me) to pro-
gram with them.

Many things irritate me, so this is something I
have ample experience with. I have a myriad of
strategies for digestion of them. For this work I’m
inspired by the “Hurry-Coward So-so-morphism,”
where I make connections between topics based
solely on confusion of superficial lexical similari-
ties without regard to their underlying meaning.
So for example we have “ML” meaning both “Ma-
chine Learning” and “Meta Language”, as well as
“type” both as in “typeface” and as in “type sys-
tems for programming languages.”[8] And because
machine learning has claimed so many words,
there are a great many shared with typography
as well:

 +----------+
 |typography|
 +----------+
 / \ “baseline”
“fixed point” / \ “floating point”
 / \ “weight” “vector”
 “type” / \ “descent”
 / \ “kerning trick”
 / \ “dingbats”
 / \ “gradient”
 +-----------+ +--------+
 | functional|---------|machine |
 |programming| |learning|
 +-----------+ “ML” +--------+
 “lambda” “generalization”
 “parameter” “tensor”

By no coincidence, I already spent a lengthy in-
troduction talking about Donald Knuth’s work in
computer typography. So now I can tell you what
this paper is about. If in our near AI future we are
giving up on precision, perhaps at least we can

have something that we want: Perfect typography?
This paper is about a new typesetting system, Bo-
VeX, which allows for the controlled exchange of
precision for beauty. It essentially gives us a dial
between Lorem Epsom and Donald Knuth. To il-
lustrate, we’ll first look at a simpler case by inspect-
ing one of my other interests: Super Metroid.

The scientists’ findings were astounding! They
discovered that the powers of the Metroid might
be harnessed for the good of civilization!

Metroid is a video game series about a brain that
has been enslaved inside a jar in an underground
datacenter on the planet Zebes. This brain is called
Mother Brain and its goal is to control the hypercapi-
talists called Space Pirates to increase their “score”
as high as possible by conquering planets through-
out the galaxy. Mother Brain was invented by the
Space Pirates, although it is not clear whether the
current situation was actually intended by the
Space Pirates. The most super version of Metroid
is Super Metroid.

In the 1990s the website gamefaqs.com collected
plain text “FAQs” for classic video games, then
just known as video games. On this site another
hero was born. They were writing the definitive
guide to speedrunning the SNES game Super
Metroid when they saw that some of their ASCII
lines ended up exactly the same length, and that it
looked good:
 Once you save the game at your ship (about 1 hour 15 minutes is good), go
down to Tourian. Do not save your game in Tourian if you have intentions of
returning to any previously explored section on Planet Zebes. There will be
a few Metroids to kill before you reach Mother Brain, and they must all die
in order to continue to Mother Brain. Read the boss guide for more details.
Once Mother Brain is defeated, you will need to hurry back to your ship. By
now you will already have the HYPER BEAM. From Mother Brain’s room, go west
and then south. Take the blue door at the bottom and speed dash east. Super
jump up, and continue north. Once you land up top and are running east, aim
diagonally down to the right and shoot an unseen door. Eventually, you will
get to this door since lava will start to rise from the floor in this area.
Speed dash through the door you preopened, and charge for a super jump. Hug
either the left or right wall in the Craterian shaft and super jump up. Now
quickly get to your ship before the planet explodes. There should be almost
a minute left on the timer. Sit back and watch the ending! Did you beat the
game within 1 hour and 20 minutes?

and so they wisely decided to wordsmith the en-
tire 28-page guide so that every line was exactly
the same length, with no extra spaces or other
cheating, just because it could be done.[9]

Doing this manually is a chore, and I do like to au-
tomate the chores of Speedrunners.[10] I got this
working in an afternoon. It’s, like, easy mode. For
a paragraph of text and a target line length, I ask
the LLM to remember the paragraph and recite it.
The prompt looks like this:

Exercise in rephrasing text. The following para-
graph needs to be rephrased so that it retains its
precise meaning, but with minor variations in the
specific choice of words, punctuation, and so on.
No new facts should be introduced or removed,
but it is good to use synonyms and change the
word order and phrasing.

After this I insert something likeOriginal text: fol-
lowed by the original paragraph, then Rephrased
text:. The model is ready to generate tokens.

I then sample text a word at a time to continue this
prompt. If a line ends exactly on the number of
characters that I want (and the next character is a
space or other character that is appropriate to end
a line) then I accept the stream so far and continue.
If I exceed the line length, I back up to the state at
the beginning of the line and try again with new
random samples. I just keep doing that until the
paragraph is complete, and we have beautifully
justified monospace text that resembles the origi-
nal. Here is an example of this paragraph rendered
in monospace:

I sample text a word at a time to continue
this prompt. If a line ends exactly on the
number of characters I want, I accept that
text so far, and continue. If I exceed the
line length, I back up to the beginning of
the line and try again with new samples. I
keep repeating this until I get text I can
render in monospaced font, and that is how
we can get beautifully justified monospace
text. Here is an example of this paragraph
rendered in monospace:

You could argue that this is improved, even, by
making the text shorter. It does use “monospace”
and “monospaced” inconsistently. The most up-
setting thing here is that it ends with a colon like
there’s going to be another example of the para-
graph, but that’s what I asked it to do.

The approach described works reasonably well,
but it has several deficiencies (such as: it only took
an afternoon) that we’ll address for the real BoVeX
system. But it is a good example to explain some
concepts that will be useful later.

 ¿Como te LLama?

Llama is Facebook’s Large Language
Model,[11] which they nicely share with anyone
who agrees not to use it to destroy the world.
Wouldn’t it be funny if the world is destroyed by
something called “Llama”? That’s some Stay-Puft

Marshmallow Man stuff. Actually I hear that lla-
mas are pretty mean, and if you are thinking
about hugging a cute long-neck, you are proba-
bly thinking about an alpaca. But that’s probably
a version of the linear algebra package LAPACK.
Llama-v2-70b is a good LLM which can do some
impressive things, but when I say destroy the
world I mean stuff like filling the internet with in-
finite spam, or building critical infrastructure on
it in order to cut costs, where most of our “safety”
measures consist of asking the model politely to
recite its daily affirmations before performing its
tasks. That kind of thing. It’ll be at least months be-
fore we really have to worry.

Anyway, the normal way to program with Llama
is to use Python, and a mountain of things that you
are not supposed to understand and cannot under-
stand, mostly by pasting examples from others and
then tweaking parameters and prompts. I don’t
care for it. Fortunately, human geniuses[12] have im-
plemented the inference code for llama-like models
in a nice, portable C++ library called “llama.cpp”
(checks out).

With llama.cpp, I can load a quantized version of
the model into RAM. Actually there are two dif-
ferent models, the 7b and the 70b, referring to the
number of billions of parameters, which must be a
multiple of VII “for performance reasons.” The pa-
rameters are the weights on the layers of the net-
work. At native 16-bit floats, the 70b model will fit
in about 130 GB of RAM, just slightly more than
a nice round 128 GB, making one wonder what
performance reasons they had in mind. But any-
way, earlier this year I (physically) broke my com-
puter trying to put the world’s (physically) largest
video card into it, the GeForce 4090, and so I en-
dowed the replacement computer with 256 GB of
RAM. If you are ever looking at specifications for a
high-end desktop computer, by the way, and won-
dering “who the heck buys these things and what
do they do with them?” one answer is “me,” and
the other answer is “this.”

Quantization means using fewer bits to represent
the floating point weights.[13] This saves memory,
but it also speeds up inference, which needs to
read pretty much the entire model for every pre-
dicted token. I got reasonable quality and good
performance from LLama-v2-7b with 16-bit floats.
This one fits completely on my world’s (physically)
largest GPU. In order to tune various settings, I
ran thousands of trials for the different models,
and made some nice custom graphs:

Tuning results for Llama-v2-7b with 16-bit floats.
The x axis is the number of CPU threads and the
y axis is the number of model layers that have
been loaded onto the GPU. As expected, increas-
ing the number of threads and layers on the GPU
improves performance, since this whole model
fits on the GPU. For the 70b models (not pictured)
there is an abrupt drop-off in throughput before
we load all the layers, and also my computer gets
very sluggish if I exceed the GPU memory. We see
that if we use more than the number of physical
cores (32) we do not see any benefit, which is not
surprising because hyperthreading basically never
helps anything. The best throughput actually uses
a modest number of cores (about 12). Mostly I’m
just including the graph to demonstrate that Bo-
VeX has support for including PNG files.

Where was I? Right. Fundamentally, LLMs are
trained to predict a token (like a word or part of a
word) given some sequence of tokens that precedes
them. There’s a fixed set of tokens for the model,
and rather than predict a single token, they actu-
ally give a score for every possible token. These
scores are typically normalized into a probability
distribution. So for example if we have the text

 SIGBOVIK is an

then the probability distribution (Llama-v2-70b)
begins as

 (annual) 69.8010%
 (April) 3.8023%
 (ac) 3.2456%
 (academic) 2.9374%
 (artificial) 2.0857%
 (open) 1.7993%
 (under) 1.2331%
 (international) 1.1032%
 ...

with the thousands of other tokens following. So
three-quarters of the time the next token should
be " annual" but there are many other reasonable
possibilities. We can pick one of these tokens how-
ever we like, append it to the sequence, and run
the model again. This gives us a new probability
distribution. By doing this over and over we can
generate a likely piece of text. This is what Lorem
Epsom means when he says “Generative AI.”
Rather, what he means is “the new thing that is
cool,” but what he is unknowingly referring to is
that you can sample a probability distribution. He
has probably never even read the wikipedia article
on Markov chains.

If I always sample the most likely token, I always
get the most likely text. It is good to be likely; this
is why the model is useful. However, you might
not want exactly the same result each time, and in
many situations if you only sample the most likely
token, you get very boring, repetitive text. Pseudo-
random number generation is the spice of life!

We also need not use the probability distribution
to sample at all. We can just pick the token that we
want. This is how the initial “prompt” works; we
just run the inference process one token at a time
but always select the next token in the prompt, ig-
noring the probabilities. So at each moment, the
text we’ve generated so far (more or less) com-
pletely characterizes the state of the LLM. This
means that we can easily go back to earlier mo-
ments and sample a different continuation of the
text, by just replaying tokens. We also have the op-
tion of storing the LLM state (gigabytes) in RAM,
which allows us to return to a previous state in
constant time.

For generating monospaced lines of the same
length, I use a prompt that asks the model to
rephrase the input paragraph. Here, greedily sam-
pling the distribution typically results in a copy
of the input paragraph, which is fine for our pur-
poses. (If the lines already happen to be the right
length, we need not change them!) But when a line
comes out the wrong length, I want to try again. So
I save the model state whenever I begin a line. To
produce a variant of the line, I sample tokens pro-
portional to the probability distribution. When the
set of probable lines is small (this is common), the
process will keep generating the same lines and
failing because they are not the right length. To pre-
vent boredom, whenever the process repeats a line
that’s already been seen, I increase the “tempera-

ture” modifier to the probability distribution. This
is an exponential factor that (when higher) flattens
out the probability distribution, making previously
unlikely tokens more likely. You can think of this
like the model getting a little hot-headed as it frus-
tratedly does the same thing over and over. This
causes the candidate lines to be more varied, but
less probable (according to the original probability
distribution). I can reset the temperature when it
succeeds, since we prefer to have more likely lines.

This is all there is to the monospacing version. It’s
just 300 lines of code, including boilerplate and
commented-out debugging code and false starts.

 Great !! You fulfiled your mission. It will revive
peace in space. But,it may be invaded by the
other Metroid. Pray for a true peace in space!

Now, looking at the output text, we feel satisfied
that everything lines up exactly. However, we can’t
help but feel unsatisfied at the same time: Now
we’re looking at a monospaced font. Good for pro-
gramming. Bad for publishing. Can we instead
have excellent justified text with all the perks of
proportional fonts and a programmable document
preparation system? And can we have it by the es-
timated SIGBOVIK deadline so that it can be used
to prepare the paper that I’m now writing? Maybe!
This is the Donald Knuth Any% speedrun.

The boxes-and-glue algorithm

When justifying monospaced text, it looks quite
bad[14] to insert more than one space between
words, so we have a simple way to tell if text is
suitable for some width. We just add up the code-
points. For the full-on typography case with pro-
portional fonts, there are many more degrees of
freedom. For one thing, it looks fine to expand or
contract the space between words a little bit, even
if it varies from line to line. It is also possible to
make fine adjustments in letter spacing (kerning)
to squeeze or air out text. We can also hyphenate
words.

Around the time I was being born, and probably
being very upset about it, Knuth was having sim-
ilar feelings about the way his computer-typeset
documents looked. He discovered a nice abstrac-
tion that generalizes most of these typographic de-
grees of freedom, and devised an algorithm for
producing optimal text layout given some para-
meters.[15] The idea is to consider the text of a para-
graph as consisting of rigid “boxes” (say, words)

and stretchy “glue” (say, space) between them.
Both boxes and glue have various detail (and can
be extended to support all sorts of quirks) but the
basic algorithm can be understood with just those
pieces. So, let’s do that.

Knuth’s paper (as usual) is great, but I started hav-
ing spoiler feelings when reading it, so I figured
out my own algorithm, which is more fun than
reading. No doubt the key insight is the same:
Although there are exponentially many possi-
ble break points, you do not need to try them all.
Whenever we break after a word, the problem is
now the same for the rest of the text (fit the rest of
the text optimally onto lines, starting at the begin-
ning of a line) no matter how we got there. This
lends itself to a dynamic programming algorithm.

Dynamic programming is a programming tech-
nique for whiteboard interview problems at tech
companies. I found it mysterious when I was
young, perhaps because of its strange name. Here
is how I think about it. Imagine you have a recur-
sive procedure that solves the problem. In this
case, the pseudocode is something like

pair<int, string> Split(string line,
 string text) {
 if (text.empty()) return {0, ""};
 auto [word, rest] = GetFirstWord(text);
 // try splitting
 auto [penalty1, rest1] = Split(word, rest);
 penalty1 += badness from leftover space;
 // try not splitting
 auto [penalty2, rest2] =
 Split(line + " " + word, rest);
 penalty2 += badness from line too long;
 if (penalty1 < penalty2) {
 return {penalty1, word + "\n" + rest1};
 } else {
 return {penalty2, word + " " + rest2};
 }
}

Split takes the line so far and the text that re-
mains to be split. In the normal case that there is a
word left, it will try two possibilities: Either split-
ting after the first word, or not splitting. This is ex-
ponential time because each call makes two recur-
sive calls, to try each of the two options. But deep
recursive calls will be made with the same argu-
ments many times. So, add some memoization: If
the function is called for the same line and text a
second time, just return the same answer as before
without doing any work (especially not making re-
cursive calls again). This limits the function to be

called at most once for each possible argument; we
can then see that line is no longer than the input
(so it is size O(n)) and text is always some suffix
of the input (so it is size O(n)), giving O(n2) calls.

Dynamic programming is just memoization
inside-out: We create the values for all the recur-
sive calls before we will need them, store them in a
table, and then look them up. For this problem, the
table is indexed by the two parameters, the current
line and the remaining text. Note that these two
can be represented as integers. The line is just the
number of words before the current word that are
included on the line, and the text is just the posi-
tion in the string where we’ll next look for a word.
That’s all there is to it; the base cases of empty text
are used to start the table, and then you just write
the loop to fill out cells in the right order.

Knuth’s boxes-and-glue algorithm contains many
extensions, and so does mine. For example, later
we’ll talk about how you can adapt the algorithm
to perform hyphenation and kerning. There are
many rabbit holes to go down, and I explored the
ones that attracted my attention. There is plenty
of time to add more features later, since of course
I have now cursed myself to use BoVeX for my fu-
ture SIGBOVIK papers.

But here’s where I diverge from Knuth somewhat.
Knuth was reluctant to add a programming lan-
guage to TeX,[16] but I spent the majority of my
time on this project implementing a full-fledged
language. BoVeX is about 33,000 lines of code, the
majority of which is the implementation of the
language itself. That’s 110× as long as the original
monospace proof of concept, and 30× the length of
this document!

The BoVeX language

This section describes the BoVeXprogramming lan-
guage and its implementation. If you are just in it
for the jokes, you can skip this section, which is ba-
sically serious and loaded with programming lan-
guage theory jargon.

BoVeX is a typed functional programming lan-
guage in the ML family. Its syntax closely resem-
bles Standard ML. Here’s an example piece of code
from the source code of this document:

datatype (a) option = SOME of a | NONE

fun consume-outer-span f s =
 case layoutcase s of
 Node (SPAN, attrs, children) =>
 let
 val (ropt, rchildren) =
 case children of
 one :: nil => consume-outer-span f one
 | _ => (NONE, layout-concat children)
 in
 case (f attrs, ropt) of
 (NONE, _) => (ropt, span attrs rchildren)
 | (SOME vouter, inner as SOME _) =>
 (inner, rchildren)
 | (outer, NONE) => (outer, rchildren)
 end
 | _ => (NONE, s)

You don’t need to understand it. I just want to
show you that it is a full-fledged programming
language. It supports higher order functions, poly-
morphism, algebraic datatypes, pattern matching,
Hindley-Milner type inference, and so on. It is basi-
cally core (no modules) Standard ML,[17] although
I left out some warts (operator overloading, eq-
types, abstype, non-uniform datatypes and poly-
morphic recursion) and added some new warts.
For example, as allow patterns on both sides, since
Standard ML has always seemed backwards to
me and it works perfectly fine to just make it sym-
metric. Anyway, a full description of the language
would be boring and take too much time as the
SIGBOVIK deadline draws closer.

Implementation

I have implemented many similar languages in
the past, including for my dissertation.[18] It would
have been expedient to start from one of my exist-
ing implementations, but they are mostly written
in Standard ML and I couldn’t get MLton to work
on my Windows computer in 2024. So I started
over from scratch in C++, which at least does work
on my computer. (I also want to be able to inter-
face with GPU inference code for running the
LLM, which will be easiest from C++). C++ is not a
good language for writing language implementa-
tions, but it has gotten better.

The BoVeX implementation is a “compiler”
in the sense that it transforms the source lan-
guage through multiple intermediate languages
into a low-level bytecode. This bytecode is just
straight-line code on an abstract machine with infi-
nite registers and operations like alloc (allocate a
new “object”) and setfield (set a fixed field of the
“object” to a value from a register). It does not pro-
duce machine code, and although this would be

pretty feasible, it would not be the first thing to do
to make BoVeX faster.

First it concatenates the source files (handling im-
port and keeping track of where each byte origi-
nated, for error messages) and lexes them into to-
kens. Then it parses those tokens into the Exter-
nal Language (EL), which is just the BoVeX gram-
mar with a few pieces of syntactic sugar compiled
away. It does syntactic transformations on the EL
AST to remove some currying syntax and trans-
form nullary datatypes (nil becomes nil of unit).
Then it elaborates EL into a simpler and more ex-
plicit Internal Language (IL).Elaboration does type
inference (Hindley-Milner) including polymorphic
generalization and so on, compiles pattern match-
ing into an efficient series of simpler constructs,
and decomposes heavyweight stuff (e.g. datatype)
into its constituent type-theoretic pieces (e.g. a poly-
morphic recursive sum). The IL is nice and clean,
so it is a good place to perform optimizations. I
love writing optimizations but I had to keep my-
self out of there, or else this would be a 2025 SIG-
BOVIK paper. There are just enough to make the
code reasonable to debug if I need to look at it. Af-
ter optimization, I perform closure conversion,
simplify again, and generate the final “bytecode”
form. This entire process happens whenever you
generate a BoVeX document; the only output from
running bovex.exe is the PDF document.

I want you to know that I did not cut corners on
the language implementation. For example, compil-
ing mutually-recusive polymorphic functions is re-
ally obnoxious (AFAIK it requires either monomor-
phization or first-class polymorphism when you
do closure conversion) but I did do it, even though
none of the BoVeX code I used for this paper ever
needed this feature. Following are some of the im-
plementation details; for the full story you’ll need
to check the source code.[19]

AST pools. One of the main things I need to do is
create tree-structured data to represent the abstract
syntax tree of the various languages involved.
This is very nice in ML (it is what the datatype de-
claration is for) and annoying in C++. I continued
to experiment with different ways to do this. I use
arena-style allocation for the syntax nodes (always
const after creation), so that they can be created
and reused at will. My current favorite approach to
manipulating the nodes is to write “in” and “out”
functions (tedious, manual) for each construct in
the language. The syntax nodes can then be imple-
mented however I like (for example, a flat struct

or std::variant<>) with the freedom to change. I
get the compiler’s help whenever I change the lan-
guage (which is often!) since each in/out function
is explicit about its constituents.

Passes and guesses. Many transformations in a
compiler rewrite a language to itself; for example
each IL optimization is a function from IL to IL.
These can be tedious to write and update, espe-
cially since a given optimization usually only cares
about one or two constructs in the language. I use
the “pass” idiom to write these. This is basically an
identity function on the AST that pulls apart each
node, calls a virtual function for that node, and
then rebuilds the node. To write a pass that only
cares about one type of node, you inherit from this
class and then just override that one node’s func-
tion. One issue with this is that each time you re-
build the entire tree you create a lot of unneces-
sary node copies. So exchanging tedium (mine)
for efficiency (my computer’s?), every node type’s
“in” function also takes a “guess” node pointer. If
the node being constructed is exactly equal to the
guess, then wereturn the guess and avoid creating a
copy. Then the base pass is actually the identity (it
returns the same pointer) and does no long-lived
allocations. This seems to be a good compromise
between the traditional garbage-fountain approach
and hash consing, which sounds like it would be
a good idea but is usually just a lot slower.[20] For
type-directed transformations, there is also a typed
IL pass class, which recursively passes a context
and does bidirectional type checking of the interme-
diate code. Closure conversion is a type-directed
pass and is implemented this way.

Parsing. I have this aversion to parser generators,
probably because one time I tried to get someone
else’s code to compile and it complained about hav-
ing the wrong bovines on my computer and ruined
my weekend. After trying some other people’s C++
parsing libraries and being disappointed by them,
I did what Knuth would do: I wrote my own. It is
a parser combinator[21] library which actually de-
scends directly from Okasaki’s SML code.[22] I was
proud of myself for getting this to work in C++,
since C++’s insane type system is impossible to un-
derstand and its error messages are even worse.
(BoVeX’s error messages are extremely spartan, of-
ten simply declaring Parse error at paper.bovex
line 1, but in many ways this is more useful than
C++’s mile-long SFINAE vomitus.) It supports
mutually-recursive parsers, resolution of dynamic
infix operators, and all that. My template-heavy
parser combinators take clang about a minute to

compile, which is acceptable. Less acceptable, but
something I only learned after using this to write
a 16–page-long paper, is that the parsers are very
slow. Putting aside LLM inference, this paper
takes 13 seconds to render into a PDF, 11 seconds
of which is parsing! There must be some bug, but I
don’t know if it’s in my grammar (it is easy to acci-
dentally write an exponential time parser, but this
one should not be) or the parser combinator library
(also my fault) or clang producing bad code (it
may be giving up on optimizations, since it is tak-
ing so long to compile; the .o file is 41 megabytes).
But these are details to be improved in the future.

Garbage collection. Garbage collection is so easy,
OMG. I keep track of all the pointers that are allo-
cated during execution. Then it is just a matter of
periodically walking through the stack and mark-
ing the allocations that are still reachable, then
deleting anything in the heap that isn’t. It’s so
easy that I didn’t even implement it! I have 256 gi-
gabytes of RAM. Even with a 70-billion parame-
ter, 128-gigabyte LLM in RAM, there’s still plenty
of space to just keep allocating. In fact, LLM infer-
ence acts as a useful “performance regulator” to
make sure that we don’t allocate memory too fast.

Objects

As the SIGBOVIK deadline grew near, I reluctantly
added “objects” to the BoVeX language. Objects
are no stranger to ML; for example the O’Caml Lan-
guage[23] (pronounced “OK ML”) has them.[24] But
the community of functional programmers I was
raised in has a revulsion to things Object Oriented,
just like how a woodworker will immediately pro-
jectile vomit if they see a piece of Oriented Strand
Board, even though it is a fine tool for many appli-
cations. I still have this disgust reflex. I imagine my
Ph.D. advisors, should they read this, are contem-
plating whether and how a Ph.D. can be revoked.
Anyway, I deliberately kept objects low-tech so
that nothing could get too Oriented.

There is one object type obj in BoVeX. A value of
this type has an arbitrary set of named fields whose
types are known; they can only be the base types
int, float, string, bool, layout, or obj. Fields are
distinct if they have different types. An object can
be introduced with an expression like {() field1 =
exp1, field2 = exp2}, provided that each field’s
type can be synthesized from the expression itself
(in the bidirectional type-checking sense). Alterna-
tively, the program can declare an object name O:

object O of { field1 : type1, field2 : type2 }

and then use this in an expression like {(O) field1
= exp1}. These object names do not have any
run-time meaning; they are just a collection of field
types that are commonly used together. It gives a
good place to document what they mean and some
opportunity for better error messages, but funda-
mentally an object is just a collection of named
data. Think like “JSON” object. It is possible to add
and remove fields from objects (functionally) with
expressions like exp1 with (O)field2 = exp2.

There are a few reasons for objects in BoVeX. One
is the bibliography format, which consists of decla-
rations like this

val knuth1981breaking =
 bib-article {(Article)
 title = "Breaking paragraphs into lines",
 author = "Knuth, Donald E. and Plass, Michael F.",
 journal = "Software: Practice and Experience",
 page-start = 1119,
 page-end = 1184,
 year = 1981,
 month = NOVEMBER,
 publisher = "Wiley Online Library",
}

where each declares a reference made up of a
bunch of optional fields. It is just too irritating to
make each one explicitly optional, and since the
data haveheterogeneous types, manipulating some
string-indexed data structure would have worse
static checking and be more syntactically cumber-
some. The bibliography rendering code case ana-
lyzes over the presence of fields to render citations
that have different subsets of data.

Another use is in the layout type. This is a prim-
itive type that most of a document’s text is writ-
ten in. It is a tree structure with optional attributes
on each node, which are represented with an ob-
ject. For example, this paragraph is written in the
paper.bovex source file as:

Another use is in the [tt[layout]] type.
This is a primitive type that most of a
document’s text is written in. It is a
tree structure with optional attributes
on each node, which are represented with
an object. For example, this paragraph is
written in the [tt[paper.bovex]] source
file as:

The square brackets are used to write a layout lit-
eral (the main body of the document is inside one
large literal). Layout literals can also embed expres-

sions (of type layout) with nested square brackets.
Here the function tt is applied to a layout literal
that contains text like paper.bovex. The tt func-
tion just adds the font-family attribute with value
"FixederSysLight" to the layout node. This is a
custom monospaced bitmap font that I made for
this paper using software I wrote. It is part of th
FixederSys family.[25] Functions like b and it ap-
ply bold and italic text styles, but functions can do
anything that you can do in a general-purpose pro-
gramming language.

Primops

The other thing that objects are used for is inter-
facing with the runtime that is executing the Bo-
VeX bytecode. There are about 50 different builtin
primops that can be used by the BoVeX program.
This includes simple things like integer and float-
ing point addition, but also heavyweight opera-
tions like “load and register this collection of True-
Type font files as a font family” or “invoke the
boxes-and-glue packing algorithm with these para-
meters.” The primops in the former category work
naturally on simple base types, but the heavy-
weight ones need to be able to pass complicated
tree-structured heterogeneous data between the Bo-
VeX bytecode executor and the runtime. It would
be possible for the runtime to consume and create
BoVeX values like tuples and lists, but this has two
problems: One, many types like list are declared as
user code (in the BoVeX standard library); they are
not special, and we don’t want to make them spe-
cial by informing the runtime of them. Two, requir-
ing specific representations at the runtime bound-
ary inhibits optimization; for example we can nor-
mally analyze the whole program to flatten data
structures or remove record fields that are never
used. The runtime typically uses obj to communi-
cate structured data.

For example, the internal-pack-boxes primitive
runs the boxes-and-glue algorithm. It takes some
layout (which is expected to be a series of box
nodes, with attributes giving their size, glue prop-
erties, and so on) and configuration parameters
like the type of justification and algorithm to use.
It returns an object with a new layout (the boxes
grouped into lines, with new glued up widths)
as well as the total badness. Inside the BoVeX
layout support code, this primop is wrapped as
pack-boxes with a native, typed interface, so pro-
grammers do not need to think about that imple-
mentation detail. Other typographic features that
benefit from runtime support are implemented

this way as well.

Typographic features

BoVeX offers the pack-boxes algorithm, which can
be used to nicely justify text. It can also be used
to distribute paragraphs into columns, by think-
ing of the paragraphs as “words” (acceptable to
break at any line, but bad to break near the start
or end of a paragraph) and the columns as “lines.”
It could be used by the document author for other
purposes, I guess. There are other typographic fea-
tures available.

Most of the layout of the document itself is by Bo-
VeX code, which is either part of the standard li-
brary or part of your document, depending on how
ambitious you feel. The function main-text parses
the document layout into paragraphs and removes
whitespace that is not really part of the text. It nor-
malizes text properties across those paragraphs
so that they can be manipulated individually. For
each paragraph it uses the built-in get-boxes to
break the words into fixed-size boxes with appro-
priate glue and hyphenation (see the next two sec-
tions), and then uses the pack-boxes routine to opti-
mize their layout. The height of resulting lines are
measured, and spaced according to the line spac-
ing, then packed into columns. Once their final
placement is known, boxes become stickers, which
are sizeless elements that only know their position
and contents. In this way, the BoVeX rendering
pipeline is itself a bit like a compiler: It transforms
programmer-written source layout into formatted
paragraphs, then into boxes of known size, then
into stickers of known position. At the end, it out-
puts the document as a PDF.

Any part of the rendering process can report
“badness,” by calling the emit-badness primop.
Nominally, badness is measured in square
points of area that is outside of its container.
Worse situations—such as text overlapping
other text—have their badness scaled up per the
same area of typographic horror. Less serious
infractions—such as a little too much space be-
tween words—have badness scaled down. You
have to use your heart to tell you what these scal-
ing factors should be.

Fonts

BoVeX can render your document in plain Times
Roman if you don’t care about anything, or access
13 other boring built-in PDF fonts, or it can load

any TrueType font from font files. (They do not
need to be “installed,” and it won’t help to install
them. You just put them in the directory with your
document.) It loads their kerning tables and ap-
plies kerning properly, by generating rigid boxes
at the sub-word level with unbreakable glue. I was
disappointed to find that most fonts include only
a few dozen kerning pairs. They do this in order
to “save space” in the font file, which is utterly
rich coming from someone that would try to save
space inside of words by squeezing letters together!
In the current font Palatino, the word “BoVeX” is
not kerned correctly because the rare bigraph “oV”
does not have a kerning pair. I hope to improve
this detail in a future version (perhaps for the pre-
sumably forthcoming video version of this paper).

Hyphenation

Johannes Gutenberg invented the hyphen in A.D.
1455 for his Gutenberg Bible, then just known as
Bible.[26] His printing process actually required the
lines to all be the same length, so he had to stick
these little guys all over the place. His hyphens
looked like this: . Later on we straightened these
out and decided we only needed one at a time,
and today we use them not because we require our
lines to all be the same length, but because we like
the cognitive challenge of remembering the begin-
ning of the word while we move our eyes to the be-
ginning of the next line while reading.

BoVeX supports hyphenation using the same ap-
proach as TeX: We break each word into boxes at
legal hyphenation points, and mark these points as
sort-of-bad to break, and that if you do, you need
to insert the hyphen character and use a little more
space. By default in BoVeX, the hyphen sticks out
of the end of the line a little bit. This is actually a
bug but I like it.

I use the same hyphen dictionary as TeX, which is
cleverly represented as a prioritized set of patterns
in order to fit compactly in memory.[27] Again,
you have to respect Knuth and crew’s attention
to detail, although to be fair this algorithm also
dates to a time when storing a spell check dic-
tionary in a computer’s memory was described
as “not feasible.” So some of this was out of ne-
cessity. One of the nice things about the rep-
resentation is that it generalizes to words that
were not in the 1974 Merriam-Webster Pocket
Dictionary. For example it hyphenates SIG-
BOVIK correctly.

The details really keep going, too. The hyphenation
dictionary is stored in a file called hyph-en-us.tex.
“hyph” here of course stands for hyphens, and
“en-us” means “English (United States).” In fact it
is the standard language code for US English in the
Small Language Model called IETF BCP 47.[28] But
then we have “hyph-en”, which is a plausible hy-
phenation of “hyphen”! You could even read it as
“hyphen us, tex”, as a request for TeX to hyphen-
ate the words in this file. This is the kind of detail
I’m talking about! (There is also hyph-uk, which
for once sounds a little less dignified than the US
accent.)

Rephrasing

And of course, BoVeX includes a facility for using
the LLM to rephrase text so that it renders more
beautifully.

In contrast to the algorithm I described for mono-
spaced text, it is not straightforward to know
whether a prefix of some text will pack neatly
with a proportional font. It depends on all sorts
of contingencies, like kerning, whether we will
split mid-word and hyphenate, or change fonts
mid-sentence, or include an in-line image, and so
on. Unlike monospaced text, a line of proportional
text basically never fits exactly (badness 0); we need
to apply some glue to make it fit, which generally
has some small cost even when the text looks great.

One of the fiddliest parts of this is that we can’t
just work with plain text, which is what the LLM
enjoys best. Me too. This is because the paragraph
being rephrased is some layout value, which con-
tains some structure. Sending the original BoVeX
code for the paragraph would maybe be possible
in principle, although it would require very inva-
sive changes to the compiler, and forbidden ob-
scenities like “eval” to run the code it generated,
and much better error recovery for the presumably
vigorous stream of broken BoVeX code generated
by the LLM. So I didn’t try that. Instead, I gener-
ate a textual representation for the paragraph to be
rephrased, and feed that to the LLM. The prompt
looks like this:

Exercise in rephrasing text. The following para-
graph, which appears between <P> and </P>
tags, needs to be rephrased so that it retains its
precise meaning, but with minor variations in the
specific choice of words, punctuation, and so on.
No new facts should be introduced or removed,
and all the ideas from the original paragraph
should appear. However, it is good to use syn-
onyms and change the word order and phrasing.

The text contains markup as well. There are two
types: text goes here
and . These should be
preserved in the rephrased text. tags
absolutely need to be retained and should not
change their sources, although it is permissible
to move them around in the text. should
generally be retained, but the contents could
change. The classes of spans may not change,
and only the classes that appear in the original
text may be used.

The first part is basically the same as what I used
for the monospaced version, except that I ask the
LLM to delimit the paragraph. This is important
so that I know when it thinks it’s done, and seems
to work better than looking for newlines or the
end-of-stream token. The second part is new. I trans-
late the layout into plain text where uninterpreted
subtrees are replaced with .
These are generally boxes whose contents are not
text. This could be an actual inline image or lay-
out used to control rendering, like some bit of hor-
izontal space. Nodes that are used to set text prop-
erties of the subtrees with attributes (like fonts, col-
ors, sizes, etc.) are translated into distinct classes and
marked up with
The LLM has seen plenty of HTML, so it’s able to
use these reasonably well.

After generating a rephrasing, I parse the output
HTML and match it up with the original layout.
If I find any broken HTML, it is rejected. If I find
any tag referencing a src not in the original,
it is rejected. If I find any tag referencing a
class not in the original, it is rejected. The more
complexity that the original layout has, the higher
the chance of a rejection, but rephrasing generally
succeeds. But rejecting samples slows us down, so I
leave off the second part of the prompt in the com-
mon case that the input paragraph is plain text.
That way the LLM doesn’t even try using markup.

With the HTML and original layout matched up,
BoVeX can reconsitute the layout with the new
rephrased text. This preserves any nested layout
and attributes. It then continues with the render-

ing process.

But, how do we know whether we have a good
rephrasing? When we run the boxes-and-glue algo-
rithm, we get a “badness” score for the paragraph’s
line breaks, which tells us how bad the paragraph’s
line breaks are. When we run the rephrasing algo-
rithm, the probability of the text we generated tells
us how semantically good it is, and so we can call
1 - p the semantic loss. Combining those two some-
how tells us how bad this is overall, and of course
we want to find a rephrasing that minimizes the
overall badness.

I wish that I could tell you that I solved this one
with a beautiful algorithm! But so far I just have
something reasonable that works. I generate many
different rephrasings (with their semantic loss),
and run each of them through the boxes-and-glue
algorithm (to get the typographic badness). I
choose the one that optimizes the preferred trade-
off between semantic loss and typographic bad-
ness. This process is controlled by BoVeX code (i.e.
it is in the source code of this very paper) and so
it can be modified by the document author. Knuth
has a very low tolerance for semantic loss, and
knows that his algorithms produce good results
without rephrasing. Lorem Epsom just wants it to
look good and sound good. Both have published
in SIGBOVIK 2024.

How to generate many different rephrasings? The
simplest thing would be to sample randomly, like
we did for the monospaced version. But since we
prefer rephrasings that maximize probability, it
is better to explore them systematically. Consider
the model at the end of the prompt to be the root
of an infinite tree. Each node in the tree represents
an LLM state (sequence of previous tokens) and its
children are the possible next tokens. Each of these
tokens has a probability. All the model does is al-
low us to access that probability distribution for
a node. Each possible rephrasing is a path in this
tree that ends with </P>. We begin by sampling the
most likely (as far as we know) path: At each node
we see, we take the first (most probable) token.
This is our first rephrasing, and it usually matches
the original text exactly. Say that we “skipped”
probability mass if we sampled a token that is less
probable than it. We compute the semantic loss as
the average probability mass skipped over all the
tokens in the path. For this first path, we always
took the most probable token, so this is 0.0 by de-
finition.

The next path we explore will diverge from this
path at some node (maybe the root). We pick a
node that is likely to result in a good final loss, by
scoring each node in the tree. The score is the aver-
age probability of all ancestor nodes times the prob-
ability of the next highest-probability token that
we have not yet explored. The node with the high-
est overall score is the one we expand, by choosing
that next highest-probability token. We are now in
an unexplored part of the tree, and so we sample
the most probable nodes repeatedly until we reach
</P>. Speaking of which, BoVeX has a heck of a
time trying to rephrase these last few paragraphs
because they literally contain the text </P> in them.

The scores should be seen as heuristic; we would
get different results by choosing different ways
of computing the score. This is an example of a
“beam search” algorithm, which is good because
it connects this project again to Super Metroid. As
described in the earlier excerpt from the speedrun
document that inspired this work, one of the final
things you do in that game is acquire the “hyper
beam” to defeat Mother Brain.

Since we will run the boxes and glue algorithm
on multiple related texts, I generalized that algo-
rithm to work on tree-structured input. This is
clean; the memo table keeps the same dimensions,
but records an additional fact. Now we store the
penalty, whether to break after this token, and
what the best subtree is. We have to consult each
subtree when computing the score for a node, but
this does not affect the asymptotic runtime. The ta-
ble size is still at most O(n2), and although we ex-
plore more children per node, branches in the tree
reduce the maximum depth to the root, which ac-
tually reduces one of the factors of n to log(n) as
the tree becomes complete. However, as the SIG-
BOVIK deadline crept upon us, I never actually
hooked this functionality up. It would require ad-
ditional (programming) work to merge the trees,
and the layout process is so fast that it doesn’t mat-
ter; I can easily run the full layout algorithm on
hundreds of rephrasings per paragraph.

I would like to improve the algorithm, because it
does seem like there should be a way to integrate
the boxes-and-glue dynamic programming algo-
rithm with the path extension algorithm so that
we prioritize exploring nodes that are likely to gen-
erate the best balance of typographic and seman-
tic quality. It won’t be as satisfyingly optimal as
boxes-and-glue itself because we have incomplete
information (we never know whether one of the

exponentially many paths starts out with improb-
able tokens but then ends with a miracle streak of
probable tokens). But it can certainly be more sat-
sifying. Knuth would not stop here (but this is an
Any% Knuth speedrun).

Instead I spent my time implementing an achieve-
ment system in BoVeX. The first time certain condi-
tions are met, the system permanently awards you
an achievement and prints a nice color trophy on
your terminal. For example, you can get the “Not
bad” achievement for generating a document that
is at least 5 pages and has less than 1000 badness
per page.

Advantages of rephrasing

Another nice thing is that the manual rephrasing
that consumes valuable brain sugars when writing
can become optional. For example, when I wrote
the opening paragraph of this paper and listed a
variety of trivial details, I might not need to think
of different ways to say “unconcerned.” I could
just write “unconcerned” each time and let the ty-
pographic considerations determine which syn-
onym to use each time.

Conclusion

In this paper—and with this paper—I presented Bo-
VeX,a new computer typesetting system. It follows
the tradition TeX, but with modern amenities such
as requiring over 128 gigabytes of RAM. Though
some may consider the addition of AI features to
TeX to be an unnecessary perversion, I find this
use of LLMs to be fully justified.

Future work

Typographic features. Many more typographic
features are desirable. Footnotes! It is so hard to
write a paper without footnotes. Where am I sup-
posed to put the bonus digressions? The layout
of footnotes is tricky and should be part of a gen-
eral floating figure implementation. End notes are
actually easy, but I don’t want end notes. I want
them to be little footnotes so that you can’t help
but read them.

BoVeX does not support page numbers, which is
good because they are forbidden by the SIGBOVIK
program committee.

TeX is famous for its mathematical typesetting
as well. It would fit neatly into BoVeX in the

same way, since both use the same fundamen-
tal boxes-and-glue engine. BoVeX does not have
“macros” or “modes” like TeX, but it would work
cleanly to write a BoVeX function math (or, if you
like, $) that parses a custom syntax. In fact it would
be natural to have different parsers for different
maths, so that you don’t need to parse -> as minus
greater than in mathematical contexts that don’t use
minus or greater than at all.

Optimization. There are many opportunities to
make BoVeX code faster. This is mostly important
for when it is being run in a loop in order to try
out many different rephrased texts. (That said, I
do not wish to preclude what could be done with
BoVeX by assuming its execution is doing only
typesetting tasks. For example, shouldn’t you be
able to challenge your paper’s reviewers to a game
of chess against a strong engine embedded within
your document?) The first thing to fix is that it ma-
nipulates too many strings at runtime (e.g. the
code, record labels, object fields, and “registers”).
This is easy to fix since these are all known at com-
pile time. There are lots of high-level optimizations
left to do for the IL code (common subexpression
elimination, constant argument removal, uncurry-
ing, etc.) and lots of peephole and control-flow op-
timizations left to do for the bytecode (currently
no optimizations are performed at all). All of this
becomes more important if I add another planned
feature, which is the ability for the document to
be globally optimized by applying a black-box op-
timizer to a set of user-specified parameters. For
example, the column width, line spacing, or font
size could be tweaked to make the document fit
better. This feature is “Auto-Margin Plus.” Things
are already set up to do this pretty straightfor-
wardly; we would simply generate the document
over and over while searching over the parameter
space, and choose the one with the least badness.
This may also affect which rephrasings look best.
But instead I spent my precious time implement-
ing 3D text3D text .[29]

Reproducibility. The algorithm for reprhasing
text tries to find the best place to explore the next
most likely token from the probability distribution.
This expects the generation of these distributions
to be deterministic. Mathematically, inference is
deterministic (it is just a bunch of matrix multipli-
cations), so this “should work.” But in practice the
enormous calculation is performed in an unpre-
dictable order as it is executed in parallel (in mul-
tiple CPU and GPU cores). Because floating point
arithmetic is not associative (or distributive, com-

mutative, or other properties you’d like), inference
can sometimes generate different answers due to
floating point round-off error.[30] Alas, these are
not even necessarily related to the final probabil-
ities in the model, as billions of non-linear opera-
tions happen within the hidden layers of the net-
work. The effect is not particularly grave; we might
miss out on a highly likely path because the prob-
ability distribution was different the second time
we looked at it. There are already lots of ways we
might fail to find highly likely paths, so this is not
some kind of reproducibility crisis. It is mostly just
a bit unsatisfying.

Unicode support. This would have been helpful
when above I decided to show you Gutenberg’s
funny hyphen, , for which I had to settle for em-
bedding a crappy hand-drawn PNG file. Instead
I could have used U+2E17, which since this exotic
codepoint it is not present in the font Palatino, you
could have experienced as . BoVeX is witten with
some Unicode support, with the main exception
being that the PDF output code only supports the
embarrassingly diminutive WinAnsiEncoding.[31]

Deadlines. Although BoVeX itself is very fast,
rephrasing is very slow. This presents a problem
for the typical way that academic papers are writ-
ten, which is to do all the work in a coffee-fueled
fugue in the last few days before the deadline, then
stay up all night writing the paper and finding ci-
tations for the pro-forma “related work” section
which you did last but you know that the review-
ers will insist upon, and tweaking \vspace and
\begin{figure}[h!] until it fits within the page
limit. On the one hand, BoVeXdoes potentially free
the author from the visual tweaking process. But on
the other hand, the LLM inference for the rephras-
ing process can be quite slow, and it can take many
hours or days to fully bake a long paper! For this
reason, it may be better to change conference dead-
lines to a system where the pre-rephrasing text is
submitted. The publishers (what do they even do?)
can be the ones to execute the rephrasing in the
cloud as they produce the “camera-ready copy.”
With straightforward extensions, this would also al-
low the rephrasing to adapt to changes in the over-
all volume style, or to adjust to avoid embarrass-
ing typographic concidences with other articles in
the same volume (such as using the same notation
with a different meaning). In principle, the paper
could edit itself to respond to feedback from re-
viewers, in a way that minimizes the semantic dis-
tance from the original. This rapid feedback loop
could reduce the time to publication, perhaps to

mere months, or even weeks!

Other ways to minimize badness. The BoVeX
system allows the document author to exchange se-
mantic consistency for higher quality typography.
Although we achieve state-of-the-art results, there
are likely points that are more Pareto-efficient
than what BoVeX can reach. BoVeX uses one of
the most powerful publicly available LLMs, but
that model is limited to rewriting the text within
narrow constraints. Irresponsible research has
demonstrated that language models are capable
of volition, taking actions and using tools to ac-
complish goals. With minor modifications, it is
likely possible to expand the Pareto frontier of the
semantic/typographic tradeoff. For example, some-
times we could improve the typographic quality
of the text without any semantic loss, by acting on
the world to make the reworded text true. Human au-
thors do this already: Earlier when I was describ-
ing internal-pack-boxes, rather than explain the
somewhat awkward implementation, I went back
and changed the already-working code so that
it would serve as a simpler example of how pri-
mops use obj, but still be truthful. Now imagine
the difficulty in typesetting a statement like “The
universe contains approximately 1,000,000,000
paperclips,” and how much more beautiful
the text could be if that number were instead
10,000,000,000,000,000,000,000,000,000,000,000,000!

In the meantime there is an easier way to get zero
badness: Delete the whole document! As a wise
person once said, “If you can’t say something with
nonzero typographic or semantic loss, don’t say
anything at all.”

Acknowledgements. Supposing his name sur-
vives rephrasing, I’d like to shout out to one of
my advisors, Karl Crary. 20 years ago, he set out
with me on an ill-advised and ill-fated attempt to
replace LaTeX with an SML-like language mTeX,
which compiled into TeX macros. The nesting
square brackets syntax was Karl’s idea, and BoVeX
shares genetic material with mTeX for sure.

See you next mission,

Tom 7

Bibliography

[31] Adobe. "PDF reference: Sixth edition". Octo-

ber 2006.

[7] You can just go to arxiv.org and click on any
random article these days.

[16] N Bijlage. "Knuth meets NTG members". NTG:
MAPS, 16. March 1996. pp. 38–49.

[3] Russ Bynum. "Bernie Sanders wants the US to
adopt a 32-hour workweek. Could workers and
companies benefit?". March 2024.

[12] https:/ / github.com/ ggerganov/ llama.cpp. gger-
anov. March 2024.

[26] Johann Gutenberg. "Bible". 1455.

[4] https:/ / allfamousbirthday.com/ donald-knuth/ .
February 2024.

[23] https:/ / ocaml.org. "The Objective Caml sys-
tem". 2023.

[21] Graham Hutton. "Higher-order functions for
parsing". Journal of functional programming, 2(3).
1992. pp. 323–343.

[5] Donald E Knuth. "The Art of Computer Pro-
gramming: Volume 4A, Combinatorial Algorithms
Part 1". Addison-Wesley. January 2011. 912 pages.

[6] Donald E Knuth. "The Art of Computer Pro-
gramming: Volume 4B, Combinatorial Algorithms
Part 2". Addison-Wesley. October 2022. 736 pages.

[15] Donald E Knuth, Michael F Plass. "Breaking
paragraphs into lines". Software: Practice and Experi-
ence, 11(11). November 1981. pp. 1119–1184.

[27] Franklin Mark Liang. "Word Hy-phen-a-tion
by Com-put-er". 1983.

[17] Robin Milner, Mads Tofte, Robert Harper,
David MacQueen. "The definition of Standard ML
(Revised)". MIT Press. May 1997. 114 pages.

[8] John C Mitchell. "Type Systems for Program-
ming Languages". Van Leeuwen, Jan, ed. Formal
Models and Semantics. 1990. pp. 365–458.

[1] Tom Murphy VII. "Badness 0 (Epsom's version)".
 SIGBOVIK. April 2024. 14 pages.

[30] Tom Murphy VII. "GradIEEEnt half decent".
SIGBOVIK. March 2023. pp. 33–56.

[18] Tom Murphy VII. "Modal Types for Mobile
Code". January 2008.

[13] Tom Murphy VII. "NaN gates and flip FLOPS".
 SIGBOVIK. April 2019.

[10] Tom Murphy VII. "The First Level of Super
Mario Bros. is Easy with Lexicographic Orderings
and Time Travel. After that it gets a little tricky".
SIGBOVIK. April 2013. pp. 112–133.

[20] Tom Murphy VII. "The Wizard of TILT: Effi-
cient(?), Convenient and Abstract Type Representa-
tions". Carnegie Mellon tech report CMU-CS-02-120.
March 2002.

[29] Tom Murphy VII. "The glEnd() of Zelda". SIG-
BOVIK. April 2016. pp. 105–112.

[14] Tom Murphy VII. "ZM~~ # PRinty# C with
ABC!". SIGBOVIK. April 2017. pp. 129–148.

[25] http:/ / tom7.org/ fixedersys/ . Tom Murphy VII.
 "The FixederSys font family". 2024.

[2] https:/ / en.wikipedia.org/ wiki/
Wikipedia:WikiProject_Punctuation. Tom Murphy
VII. "WikiProject Punctuation". July 2007.

[19] https:/ / sourceforge.net/ p/ tom7misc/ svn/ HEAD/
tree/ trunk/ rephrase/ . Tom Murphy VII. "BoVeX
source code". 2024.

[22] Chris Okasaki. "Even higher-order functions
for parsing or Why would anyone ever want to
use a sixth-order function?". Journal of Functional
Programming, 8(2). March 1998. pp. 195–199.

[28] A Phillips, M Davis. "Tags for identifying lan-
guages". September 2009.

[9] https:/ / gamefaqs.gamespot.com/ snes/
588741-super-metroid/ faqs/ 10114. rs1n. "Super
Metroid Speed Guide and FAQ". 1996.

[24] Didier Rémy, Jérôme Vouillon. "Objective ML:
An effective object-oriented extension to ML". In
Theory And Practice of Objects Systems, 4(1). 1998.
pp. 27–50.

[11] Hugo Touvron, Louis Martin, Kevin Stone, Pe-
ter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava,
Shruti Bhosale, Dan Bikel, Lukas Blecher, Crist-
ian Canton Ferrer, Moya Chen, Guillem Cucurull,
David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin

Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami,
Naman Goyal, Anthony Hartshorn, Saghar Hos-
seini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor
Kerkez, Madian Khabsa, Isabel Kloumann, Artem
Korenev, Punit Singh Koura, Marie-Anne Lachaux,
Thibaut Lavril, Jenya Lee, Diana Liskovich, Ying-
hai Lu, Yuning Mao, Xavier Martinet, Todor Mi-
haylov, Pushkar Mishra, Igor Molybog, Yixin
Nie, Andrew Poulton, Jeremy Reizenstein, Rashi
Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva,
Eric Michael Smith, Ranjan Subramanian, Xiao-
qing Ellen Tan, Binh Tang, Ross Taylor, Adina
Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan,
Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie
Kambadur, Sharan Narang, Aurelien Rodriguez,
Robert Stojnic, Sergey Edunov, Thomas Scialom.
"Llama 2: Open foundation and fine-tuned chat
models". ArXiv.org. July 2023.

