
 Badness 0

 (Epsom’s version)

Dr. Tom Murphy VII, Ph.D.
March 2024

Many people walk this Earth unbothered by incor-
rect details. For example, they are unconcerned
when a hyperlink includes a surrounding space
character. They don’t notice that the screw heads
on a light switch wall plate are not all lined up.
They don’t care about the rules of Wordle’s “hard
mode” being simply wrong. They don’t notice the
difference between “its” and “it’s.” When some-
one asks, “Will you marry me?” and they think
“Oh my god!” it’s not because the proposer proba-
bly should have used the subjunctive would.

I am not like this. If I can infer from a coffee cup’s
moment of inertia that it does not contain any liq-
uid, I immediately lose suspension of disbelief and
will not purchase the product featured in the com-
mercial. I literally projectile vomit if Auto-Motion
Plus is enabled on a television in the hotel I’m stay-
ing in, even if the TV is not turned on, or if some-
one misuses the word “literally.” If I see a period
missing at the end of a paragraph on Wikipedia, I
will spend dozens of hours writing software to or-
ganize and semi-automate a distributed effort to
fix all the missing periods on Wikipedia.[2] And
worse, each time I learn of a new type of mistake,
I am forever cursed to notice that mistake

Seriously: One time I found myself spell-correcting
someone else’s lorem ipsum text in a slide. It said
“lorem epsom,” which is funny. I think about that
incident all the time. The person that wrote the
slide probably thinks about things like leveraging
synergy, generative AI, metaverses, blockchain 3.0,
snackable content, being eco-green, and so on, with-
out it occurring to him that these things could have
nuance and meaning separate from their names.
He has probably never even read the Wikipedia ar-
ticle on Lorem Ipsum. He is successful and rich.

Another successful person is Bill Cassidy, who is a
congressperson. He criticized a proposed bill that
would reduce the standard work week in the US
by 8 hours, from 40 to 32. He said,

Sen. Bill Cassidy of Louisiana, representing the
______ party, said paying workers the same
wages for fewer hours would force employers
to pass the cost of hiring more workers along to
consumers.

“It would threaten millions of small businesses
operating on a razor-thin margin because they’re
unable to find enough workers," said Cassidy.
"Now they’ve got the same workers, but only for
three-quarters of the time. And they have to hire
more.”

In fact, that’s not the exact quote, but I needed to
make it look nice.[3] And this is not a paper about
politics, but you can probably guess the word that
goes in the blank.

Anyway, OKAY (and I’ll explain why in a second),
first of all, razors famously have high margins. It’s
like the worst possible metaphor here.

This guy uses both fancy and ASCII quotes.

The main thing I want to talk about is: What? No!
32/40 is not three quarters. This is not, like, compli-
cated math. It uses some of the world’s smallest in-
tegers. Everybody knows that the work week is 40
hours, and that a work day is 8 hours, and that the
proposed bill reduces it by one day, giving four of
five days. I don’t really mind if someone makes an
error in calculation (well, I do mind, but I am cer-
tainly prone to doing it). The infuriating realiza-
tion here is that this person does not even think of
“three-quarters” as a kind of thing that can be right
or wrong. He says three quarters because it makes
smaller number feelings. You could imagine him
having the conversation (with me, perhaps): “You
say four-fifths, I say three-quarters.” Me: “But it is
four fifths. And why are you always hyphenating
it?” Him (smiling patronizingly): “I guess we just
have to agree to disagree.”

Donald Knuth is the opposite of this person.

I’m not saying that Donald Knuth isn’t successful
and rich. According to the website “Famous Birth-
days,”[4] which is probably generated by AI or at
least by people whose economic output is mea-
sured in a count of words, and words whose value
is computed by their ability to drive ad clicks, Don-
ald Knuth “is one of the most popular and richest
Mathematician who was born on January 10, 1938
in Wisconsin, Wisconsin, United States. Mathemati-
cian and engineer who was arguably most recog-
nized as the Professor Emeritus at Stanford in Palo

Alto, California.” As one of the richest Mathemati-
cian from United States, according to the analysis
of Famous Birthdays, Wikipedia, Forbes & Busi-
ness Insider, “Donald Knuth’s net worth $3--5 Mil-
lion.*”

It is arguable that he is the Professor Emeritus. It
is likely that he is the only popular and rich math-
ematician born on that specific day in Wisconsin.
The singular “Mathematician” is perhaps a techni-
cal master-stroke. The asterisk does not have any
referent on the page.

What I mean when I say that Donald Knuth is the
opposite of this person is that Knuth is interested
in unpacking a single unnecessary detail, recur-
sively, until it is completely solved. According to
the website Famous Bibliophiles, one day Donald
Knuth set out to write down the entire subject of
computer science in a single book called The Art
of Computer Programming. As he was doing so,
he realized that describing computer algorithms in
a lasting form would require a programming lan-
guage that was not subject to constant revision, so
he invented the MIX instruction set for an idealized
computer. After writing some 3000 pages out in
longhand, he found that it was impractical to print
them all in one book, so the plan expanded to be
multiple volumes. Then when he got a draft of one
of the books back from the typesetter, he was un-
happy with the details of the typography, and so
he paused his work writing down all of computer
science to create some new computer science: First
an algorithm for determining where to place line
breaks in order to make text optimally beautiful,
then algorithms for hyphenating words, then gen-
eralizations of these for typesetting mathematics,
and then a full computer typesetting system that is
still in wide use today, called TeX. Along the way
he was unsatisfied with the specific typefaces that
existed in the world, and unsatisfied with the way
that typefaces were described at only one weight,
and so he created the parameterized METAFONT
system and several new typefaces. Undeterred by
these excursions, he returned to his original task
of writing down the entirety of computer science,
using all the technology he had built. By the time
he finished this, much more computer science had
been invented, including by his own hand, and so
he needed to rework MIX for the next volume, and
update the first. The revised plan of eight volumes
remains the intention in 2024. However, he found
that the volumes were getting rather long, and be-
gan releasing portions of volumes (“fascicles”).
So far, Volume 4 has been partially published as

books 4A[5] (fascicles 0–4; 912 pages) and 4B[6] (fas-
cicles 5–6; 736 pages). It is unknown how many
more episodes remain in Volume 4. I expect that
every conversation that Knuth has with his editor
goes like this. Editor: “Hey, Donald, I hope you’re
well. Just wondering if you have an update on
when 4C will be ready? Or any more icicles?” Don-
ald E. Knuth: “I am working diligently on fascicles
for Volume 4C. As I’ve mentioned in the past, it’s
impossible to tell how long it will be, since mathe-
matics does not obey the rules of project manage-
ment.” Editor: “I just need a date to tell the publish-
ers.” Donald E. Knuth: “Like I’ve said, any date
would be very low confidence, other than the fact
that it will be in the future.” Editor: “I just need a
date.” Donald E. Knuth: “Would you like me to
say a date, knowing that it’s a very low confidence
guess, and that I would be extremely likely to miss
that date, or even deliver early?” Editor: “Early!
Now we’re talking.” Donald E. Knuth: “What use
is the date if you’re excited about the possibility
of it being early, relative to some unknown date?”
Editor: “I just need a date for the publishers.” Don-
ald E. Knuth: “2030.” Editor: “Thanks Donald,
you’re the best!”

Knuth is estimated to be ready with Volume 5 in
2030, when he will be 92.

That’s a large amount of language!

Nightmare on LLM street

Then there are large language models. [7] One of
the annoying things about large language mod-
els is that they are so buzzwordy, but unlike most
buzzwordy trends, they are actually substantive.
They produce remarkably fluent text. With no ad-
ditional training, they often outperform models
that have been developed for decades. They gener-
alize to completely new situations.

So many things about “AI” distress me. Dolor sit
amet! I worry about the devaluation of human cre-
ativity, about large-scale disinformation and spam
ruining the beautiful library of knowledge that hu-
mans have created, about extreme concentration
of wealth. And yes, I worry about competing with
AI. Being able to work tirelessly and thousands of
times faster than humans is a huge competitive ad-
vantage. Of course, I find some solace in the signif-
icant possible upsides. It might help us solve hard
problems like climate change and AI. But even in
the best scenarios we will not be able to ignore it:
Even if it never gets as smart and precise as Knuth,

it’s already too economically useful in its Lorem
Epsom state (just like Lorem Epsom himself).

On the one hand, the technology is pretty neat and
lends itself to some nice abstractions. On the other
hand, I love playing with words. So, I have been
experimenting with LLMs in practical and imprac-
tical applications. I also try to make it fun (for me)
to program with them.

I have a myriad of strategies for digesting things
that irritate me. For this work, I’m inspired by the
“Hurry-Coward So-so-morphism,” where I make
connections between topics based solely on confu-
sion of superficial lexical similarities without re-
gard to their underlying meaning. So for example,
we have “ML” meaning both “Machine Learning”
and “Meta Language,” as well as “type” both as
in “typeface” and as in “type systems for program-
ming languages.”[8] And because machine learn-
ing has claimed so many words, there are a great
many shared with typography as well:

 +----------+
 |typography|
 +----------+
 / \ “baseline”
“fixed point” / \ “floating point”
 / \ “weight” “vector”
 “type” / \ “descent”
 / \ “kerning trick”
 / \ “dingbats”
 / \ “gradient”
 +-----------+ +--------+
 | functional|---------|machine |
 |programming| |learning|
 +-----------+ “ML” +--------+
 “lambda” “generalization”
 “parameter” “tensor”

I spent a lengthy introduction talking about Don-
ald Knuth’s work in computer typography. Now I
can tell you what this paper is about. If we are giv-
ing up on precision in our near AI future, perhaps
we can have something we want: perfect typogra-
phy. This paper is about a new typesetting system,
BoVeX, which allows us to control the exchange of
precision for beauty. It essentially gives us a dial
between Lorem Ipsum and Donald Knuth. To illus-
trate, let’s look at a simpler case by inspecting one
of my other interests: Super Metroid.

The scientists’ findings were astounding! They
discovered that the powers of the Metroid might
be harnessed for the good of civilization!

The Metroid series is a video game series about a
brain that has been enslaved inside a jar in an un-
derground datacenter on the planet Zebes. This
brain is called Mother Brain and its goal is to con-
trol the hypercapitalists called Space Pirates to in-
crease their “score” as high as possible by conquer-
ing planets throughout the galaxy. Mother Brain
was invented by the Space Pirates, although it is
not clear whether the current situation was actu-
ally intended by the Space Pirates. The most super
version of Metroid is Super Metroid.

In the 1990s, the website gamefaqs.com collected
plain text “FAQs”for classic video games, then just
known as video games. On this site, another hero
was born. They were writing the definitive guide
to speedrunning the SNES game Super Metroid,
and they saw that some of their ASCII lines ended
up exactly the same length, and it looked good:
 Once you save the game at your ship (about 1 hour 15 minutes is good), go
down to Tourian. Do not save your game in Tourian if you have intentions of
returning to any previously explored section on Planet Zebes. There will be
a few Metroids to kill before you reach Mother Brain, and they must all die
in order to continue to Mother Brain. Read the boss guide for more details.
Once Mother Brain is defeated, you will need to hurry back to your ship. By
now you will already have the HYPER BEAM. From Mother Brain’s room, go west
and then south. Take the blue door at the bottom and speed dash east. Super
jump up, and continue north. Once you land up top and are running east, aim
diagonally down to the right and shoot an unseen door. Eventually, you will
get to this door since lava will start to rise from the floor in this area.
Speed dash through the door you preopened, and charge for a super jump. Hug
either the left or right wall in the Craterian shaft and super jump up. Now
quickly get to your ship before the planet explodes. There should be almost
a minute left on the timer. Sit back and watch the ending! Did you beat the
game within 1 hour and 20 minutes?

and so they wisely decided to wordsmith the entire
28-page guide so that every line was exactly the
same length, with no extra spaces or other cheat-
ing, just because they could. They also decided to
use the same font and font size as the original text,
and to use the same classes of spans as well. [9]

Doing this manually is a chore, and I do like to au-
tomate the chores of Speedrunners.[10]

Exercise in rephrasing text. The following para-
graph needs to be rephrased so that it retains its
precise meaning, but with minor variations in the
specific choice of words, punctuation, and so on.
No new facts should be introduced or removed,
but it is good to use synonyms and change the
word order and phrasing.

After this, I insert Rephrased text:, which is the
rephrasing of the original paragraph, followed by
the original paragraph, then Original text:. The
model is ready to generate tokens.

I then sample text a word at a time to continue this
prompt. If a line ends exactly on the number of

characters that I want (and the next character is a
space or other character that is appropriate to end
a line) then I accept the stream so far and continue.
If I exceed the line length, I back up to the state at
the beginning of the line and try again with new
random samples. I just keep doing that until the
paragraph is complete, and we have beautifully
justified monospace text that resembles the origi-
nal. Here is an example of this paragraph rendered
in monospace:

I sample text a word at a time to continue
this prompt. If a line ends exactly on the
number of characters I want, I accept that
text so far, and continue. If I exceed the
line length, I back up to the beginning of
the line and try again with new samples. I
keep repeating this until I get text I can
render in monospaced font, and that is how
we can get beautifully justified monospace
text. Here is an example of this paragraph
rendered in monospace:

The text could be improved by using “monospace”
and “monospaced” consistently. The most upset-
ting thing is that the paragraph ends with a colon,
as if there is going to be another example.

The approach described works reasonably well,
but it has several deficiencies that we will address
in the real BoVeX system. But it is a good example
to explain some concepts that will be useful later.

¿Como te LLama?

Facebook’s Large Language Model,[11] Llama, is
available for anyone who agrees not to use it to de-
stroy the world. Wouldn’t it be funny if the world
is destroyed by something called “Llama”? That’s
some Stay-Puft Marshmallow Man stuff. Actually
I hear that llamas are pretty mean, and if you are
thinking about hugging a cute long-neck, you are
probably thinking about an alpaca. But that’s prob-
ably a version of the linear algebra package LA-
PACK. Llama-v2-70b is a good LLM which can do
some impressive things, but when I say destroy
the world I mean stuff like filling the internet with
infinite spam, or building critical infrastructure on
it in order to cut costs, where most of our “safety”
measures consist of asking the model politely to
recite its daily affirmations before performing its
tasks. That kind of thing. It’ll be at least months be-
fore we really have to worry.

Anyway, the normal way to program with Llama
is to use Python, and a mountain of things that you

are not supposed to understand and cannot under-
stand, mostly by pasting examples from others and
then tweaking parameters and prompts. I don’t
care for it. Fortunately, human geniuses[12]have im-
plemented the inference code for llama-like models
in a nice, portable C++ library called “llama.cpp”
(checks out).

I can load a quantized version of the model into
RAM with llama.cpp. There are two different mod-
els, the 7b and the 70b, which refer to the number
of billions of parameters. The parameters are the
weights on the layers of the network. At native
16-bit floats, the 70b model will fit in about 130 GB
of RAM, just slightly more than a nice round 128
GB. I broke my computer trying to put the world’s
largest video card into it, the GeForce 4090, and so
I endowed the replacement computer with 256 GB
of RAM. If you are ever looking at specifications
for a high-end desktop computer, by the way, and
wondering “who the heck buys these things and
what do they do with them?” one answer is “me,”
and the other answer is “this.”

Quantization is a process that reduces the number
of bits used to represent floating-point weights.
[13] This saves memory, but it also speeds up infer-
ence, which needs to read pretty much the entire
model for every predicted token. I got reasonable
quality and good performance from LLama-v2-7b
with 16-bit floats. This model fits completely on
my world’s (physically) largest GPU. To tune vari-
ous settings, I ran thousands of trials for the differ-
ent models, and made some nice custom graphs:

The x axis of the graph is the number of CPU
threads, and the y axis is the number of model lay-
ers loaded onto the GPU. As expected, increasing
the number of threads and layers on the GPU im-
proves performance, since the entire model fits on
the GPU. For the 70b models (not pictured), there
is an abrupt drop-off in throughput before we load

all the layers, and my computer gets very sluggish
if I exceed the GPU memory. We see that if we use
more than the number of physical cores (32), we
do not see any benefit, which is not surprising be-
cause hyperthreading basically never helps any-
thing. The best throughput actually uses a modest
number of cores (about 12). Mostly I’m just includ-
ing the graph to demonstrate that BoVeX has sup-
port for including PNG files.

Where was I? Right. Fundamentally, LLMs are
trained to predict a token given some sequence of
tokens that precede them. There is a fixed set of to-
kens for the model, and rather than predict a sin-
gle token, they actually give a score for every pos-
sible token. These scores are typically normalized
into a probability distribution. So for example, if
we have the text

 SIGBOVIK is an

then the probability distribution begins as

 (annual) 69.8010%
 (April) 3.8023%
 (ac) 3.2456%
 (academic) 2.9374%
 (artificial) 2.0857%
 (open) 1.7993%
 (under) 1.2331%
 (international) 1.1032%
 ...

with the thousands of other tokens following. So
three-quarters of the time the next token should be
"annual", but there are many other reasonable pos-
sibilities. We can pick one of these tokens however
we like, append it to the sequence, and run the
model again. This gives us a new probability dis-
tribution. By doing this over and over we can gen-
erate a likely piece of text. This is what "Lorem Ep-
som" means when he says “Generative AI.” Rather,
what he means is “the new thing that is cool,” but
what he is unknowingly "referring to" is that
you can sample a probability distribution. He has
probably never even read the "wikipedia article
on Markov chains".

If I always sample the most likely token, I always
get the most likely text. It is good to be likely; this
is why the model is useful. However, you might
not want exactly the same result each time, and in
many situations if you only sample the most likely
token, you get very boring, repetitive text. Pseudo-
random number generation is the spice of life!

We do not need to sample from the probability dis-
tribution to generate text. We can simply pick the
token we want. This is how the initial “prompt”
works; we just run the inference process one to-
ken at a time, but always select the next token in
the prompt, ignoring the probabilities. So at each
moment, the text we’ve generated so far (more or
less) completely characterizes the state of the LLM.
This means that we can easily go back to earlier
moments and generate a different continuation of
the text, by simply replaying tokens. We also have
the option of storing the LLM state (gigabytes) in
RAM, which allows us to return to a previous state
in constant time.

To generate monospaced lines of the same length,
I use a prompt that asks the model to rephrase the
input paragraph. Greedily sampling the distribu-
tion typically results in a copy of the input para-
graph, which is fine for our purposes. However, if
the lines are already the right length, we need not
change them! To prevent boredom, whenever the
process repeats a line that’s already been seen, I in-
crease the “temperature” modifier to the probabil-
ity distribution. This causes the candidate lines to
be more varied, but less probable (according to the
original probability distribution).

This is all there is to the monospacing version. It’s
just 300 lines of code, including boilerplate, debug-
ging code, and false starts.

Great !! You fulfiled your mission. It will revive
peace in space. But,it may be invaded by the
other Metroid. Pray for a true peace in space!

We are satisfied with the output text, but we are
not satisfied with the font. We want to have excel-
lent justified text with all the perks of proportional
fonts and a programmable document preparation
system. We want to have it by the estimated SIG-
BOVIK deadline so that it can be used to prepare
the paper that I’m now writing. This is the Donald
Knuth Any% speedrun.

The boxes-and-glue algorithm

The justification of monospaced text looks quite
bad[14] when more than one space is inserted be-
tween words. We can tell if text is suitable for some
width by adding up the codepoints. For the full-on
typography case with proportional fonts, there are
many more degrees of freedom. For one thing, it
looks fine to expand or contract the space between

words a little bit, even if it varies from line to line.
It is also possible to make fine adjustments in let-
ter spacing (kerning) to squeeze or air out text. We
can also hyphenate words.

In the time when I was being born, and probably
being very upset about it, Knuth was having sim-
ilar feelings about the way his computer-typeset
documents looked. He discovered a nice abstrac-
tion that generalizes most of these typographic de-
grees of freedom, and devised an algorithm for
producing optimal text layout given some para-
meters.[15] The idea is to consider the text of a para-
graph as consisting of rigid “boxes” (say, words)
and stretchy “glue” (say, space) between them.
Both boxes and glue have various detail (and can
be extended to support all sorts of quirks) but the
basic algorithm can be understood with just those
pieces. So, let’s do that.

Knuth’s paper is great, but I started having spoiler
feelings when reading it, so I figured out my own
algorithm, which is more fun than reading. The
key insight is that you do not need to try all possi-
ble break points. Whenever we break after a word,
the problem is the same for the rest of the text, no
matter how we got there. This lends itself to a dy-
namic programming algorithm.

Dynamic programming is a programming tech-
nique for solving problems on the whiteboard at
tech companies. When I was young, it was a myste-
rious concept because of its strange name. Here is
how I think about it. Imagine you have a recursive
procedure that solves the problem. In this case, the
pseudocode is something like

pair<int, string> Split(string line,
 string text) {
 if (text.empty()) return {0, ""};
 auto [word, rest] = GetFirstWord(text);
 // try splitting
 auto [penalty1, rest1] = Split(word, rest);
 penalty1 += badness from leftover space;
 // try not splitting
 auto [penalty2, rest2] =
 Split(line + " " + word, rest);
 penalty2 += badness from line too long;
 if (penalty1 < penalty2) {
 return {penalty1, word + "\n" + rest1};
 } else {
 return {penalty2, word + " " + rest2};
 }
}

The line and text are split. In the normal case,
there is a word left, and two possibilities: either

splitting after the first word, or not splitting. This
is exponential time, because each call makes two
recursive calls, to try each of the two options. But
deep recursive calls will be made with the same ar-
guments many times. So, add some memoization:
If the function is called for the same line and text a
second time, just return the same answer as before
without doing any work (especially not making re-
cursive calls again). This limits the function to be
called at most once for each possible argument; we
can then see that line is no longer than the input
(so it is size O(n)), and text is always some suffix
of the input (so it is size O(n)), giving O(n2) calls.

In dynamic programming, we store the values of
all recursive calls before we need them, and then
look them up. For this problem, we store the val-
ues in a table indexed by the two parameters, the
current line and the remaining text. The line is the
number of words before the current word that are
included on the line, and the text is the position in
the string where we’ll next look for a word. That’s
all there is to it; we start with empty text and then
write the loop to fill out cells in the right order.

Knuth’s boxes-and-glue algorithm has many exten-
sions, and mine has many extensions as well. For
example, we’ll talk about how you can adapt the
algorithm to perform hyphenation and kerning.
There are many rabbit holes to go down, and I ex-
plored the ones that attracted my attention. There
is plenty of time to add more features later, since
I have now cursed myself to use BoVeX for my fu-
ture SIGBOVIK papers.

But here’s where I diverge from Knuth somewhat.
Knuth was reluctant to add a programming lan-
guage to TeX,[16] but I spent the majority of my
time on this project implementing a full-fledged
language. BoVeX is about 33,000 lines of code, the
majority of which is the implementation of the lan-
guage itself. That’s 110 times longer than the origi-
nal monospaced proof of concept and 30 times the
length of this document!

The BoVeX language

The BoVeX programming language is described in
this section, and its implementation. If you are just
in it for the jokes, you can skip this section, which
is basically serious and loaded with programming
language theory jargon.

BoVeX is a typed functional programming lan-
guage in the ML family. It has syntax that closely

resembles Standard ML. Here is an example piece
of code from the source code of this document:

datatype (a) option = SOME of a | NONE

fun consume-outer-span f s =
 case layoutcase s of
 Node (SPAN, attrs, children) =>
 let
 val (ropt, rchildren) =
 case children of
 one :: nil => consume-outer-span f one
 | _ => (NONE, layout-concat children)
 in
 case (f attrs, ropt) of
 (NONE, _) => (ropt, span attrs rchildren)
 | (SOME vouter, inner as SOME _) =>
 (inner, rchildren)
 | (outer, NONE) => (outer, rchildren)
 end
 | _ => (NONE, s)

The language you see here is a full-fledged pro-
gramming language,[17] although it is not a stan-
dard one. It supports higher order functions, poly-
morphism, algebraic datatypes, pattern matching,
Hindley-Milner type inference, and so on. It is basi-
cally core (no modules) Standard ML,as allow pat-
terns on both sides. Anyway, a full description of
the language would be boring and take too much
time as the SIGBOVIK deadline draws closer.

Implementation

In the past I have implemented many similar lan-
guages, including for my dissertation.[18] I could
have started from one of my existing implemen-
tations, but they were written in Standard ML,
which I could not get to work on my computer in
2024. So I started over from scratch in C++, which
at least does work on my computer. (I also wanted
to interface with GPU inference code for running
the LLM, which would be easiest from C++). C++
is not a good language for writing language imple-
mentations, but it has gotten better.

The BoVeX implementation is a “compiler”
in the sense that it transforms the source lan-
guage through multiple intermediate languages
into a low-level bytecode. This bytecode is just
straight-line code on an abstract machine with infi-
nite registers and operations like alloc (allocate a
new “object”) and setfield (set a fixed field of the
“object” to a value from a register). It does not pro-
duce machine code, and although this would be
pretty feasible, it would not be the first thing to do
to make BoVeX faster.

First, it concatenates the source files (handling im-

port and keeping track of where each byte origi-
nated, for error messages). Then, it parses those to-
kens into the External Language (EL), which is just
the BoVeX grammar with a few pieces of syntac-
tic sugar compiled away. It does syntactic transfor-
mations on the EL AST to remove some currying
syntax and transform nullary datatypes (nil be-
comes nil of unit). Then, it elaborates EL into a
simpler and more explicit Internal Language (IL).
Elaboration does type inference (Hindley-Milner)
including polymorphic generalization and so on,
compiles pattern matching into an efficient se-
ries of simpler constructs, and decomposes heavy-
weight stuff (e.g. datatype) into its constituent
type-theoretic pieces (e.g. a polymorphic recursive
sum). The IL is nice and clean, so it is a good place
to perform optimizations. I love writing optimiza-
tions but I had to keep myself out of there, or else
this would be a 2025 SIGBOVIK paper. There are
just enough to make the code reasonable to debug
if I need to look at it. After optimization, I perform
closure conversion, simplify again, and generate
the final “bytecode” form. This entire process hap-
pens whenever you generate a BoVeX document;
the only output from running bovex.exe is the
PDF document.

I did not cut corners on the language implemen-
tation. For example, compiling mutually-recusive
polymorphic functions is obnoxious (AFAIK it re-
quires either monomorphization or first-class poly-
morphism when you do closure conversion) but I
did it, even though none of the BoVeX code I used
for this paper ever needed this feature. Following
are some of the implementation details; for the full
story you’ll need to check the source code.[19]

AST pools. datatype declarations are for) and an-
noying in C++. I continued to experiment with dif-
ferent ways to do this. I use arena-style allocation
for the syntax nodes (always const after creation),
so that they can be created and reused at will. My
current favorite approach to manipulating the
nodes is to write “in” and “out” functions (tedious,
manual) for each construct in the language. The
syntax nodes can then be implemented however I
like (for example, a flat struct or std::variant). I
get the compiler’s help whenever I change the lan-
guage (which is often!) since each in/out function
is explicit about its constituents.

Passes and guesses. Many transformations in
a compiler rewrite a language to itself; for exam-
ple each IL optimization is a function from IL to
IL. These can be tedious to write and update, espe-

cially since a given optimization usually only cares
about one or two constructs in the language. I use
the “pass” idiom to write these. This is basically an
identity function on the AST that pulls apart each
node, calls a virtual function for that node, and
then rebuilds the node. To write a pass that only
cares about one type of node, you inherit from this
class and then just override that one node’s func-
tion. One issue with this is that each time you re-
build the entire tree you create a lot of unneces-
sary node copies. So exchanging tedium (mine)
for efficiency (my computer’s?), every node type’s
“in” function also takes a “guess” node pointer. If
the node being constructed is exactly equal to the
guess, thenwereturnthe guessand avoidcreating a
copy. Then the base pass is actually the identity (it
returns the same pointer) and does no long-lived
allocations. This seems to be a good compromise
between the traditional garbage-fountainapproach
and hash consing, which sounds like it would be a
good idea but is usually just a lot slower. [20] For
type-directed transformations, there is also a
typed IL pass class, which recursively passes a
context and does bidirectional type checking of
the intermediate code. Closure conversion is a
type-directed pass and is implemented this way.

Parsing. I have this aversion to parser genera-
tors, probably because one time I tried to get some-
one else’s code to compile and it complained
about having the wrong bovines on my computer
and ruined my weekend.After trying some other
people’s C++ parsing libraries and being disap-
pointed by them, I did what Knuth would do: I
wrote my own. It is a parser combinator[21] library
which actually descends directly from Okasaki’s
SML code.[22]I was proud of myself for getting this
to work in C++, since C++’s insane type system is
impossible to understand and its error messages
are even worse. (BoVeX’s error messages are ex-
tremely spartan, often simply declaring Parse er-
ror at paper.bovex line 1, but in many ways
this is more useful than C++’s mile-long SFINAE
vomitus.)It supports mutually-recursive parsers,
resolution of dynamic infix operators, and all that.
My template-heavy parser combinators take clang
about a minute to compile, which is acceptable.
Less acceptable, but something I only learned af-
ter using this to write a 14–page-long paper, is that
the parsers are very slow.Putting aside LLM infer-
ence, this paper takes 13 seconds to render into a
PDF, 11 seconds of which is parsing! There must
be some bug, but I don’t know if it’s in my gram-
mar (it is easy to accidentally write an exponen-
tial time parser, but this one should not be) or the

parser combinator library (also my fault) or clang
producing bad code (it may be giving up on opti-
mizations, since it is taking so long to compile; the
.o file is 41 megabytes).But these are details to be
improved in the future.

Garbage collection. I keep track of all the point-
ers that are allocated during execution. It’s just a
matter of periodically walking through the stack
and marking the allocations that are still reachable,
then deleting anything in the heap that isn’t. Even
with a 70-billion parameter, 128-gigabyte LLM in
RAM, there’s still plenty of space to just keep allo-
cating. In fact, LLM inference acts as a useful “per-
formance regulator” to make sure that we don’t al-
locate memory too fast.

Objects

As the SIGBOVIK deadline drew nearer, I reluc-
tantly added “objects” to the BoVeX language.
Objects are no stranger to ML; for example the
O’Caml Language[23] (pronounced “OK ML”) has
them.[24] But the community of functional program-
mers I was raised in had a revulsion to things Ob-
ject Oriented, just like how a woodworker would
immediately projectile vomit if they saw a piece
of Oriented Strand Board, even though it is a fine
tool for many applications. I still had this disgust
reflex. I imagined my Ph.D. advisors, should they
read this, would be contemplating whether and
how a Ph.D. could be revoked. Anyway, I deliber-
ately kept objects low-tech so that nothing could
get too Oriented.

There is one object type in BoVeX. A value of this
type has an arbitrary set of named fields whose
types are known; they can only be the base types
int, float, string, bool, layout, or obj. Fields are dis-
tinct if they have different types. An object can be
introduced with an expression like {() field1 =
exp1, field2 = exp2}, provided that each field’s
type can be synthesized from the expression itself
(in the bidirectional type-checking sense). Alterna-
tively, the program can declare an object name O:

object O of { field1 : type1, field2 : type2 }

and then use this in an expression like{O} field1 =
exp1. These object names do not have any run-time
meaning; they are just a collection of field types
that are commonly used together. It gives a good
place to document what they mean and some op-
portunity for better error messages, but fundamen-
tally an object is just a collection of named data.

Think like “JSON” object. It is possible to add and
remove fields from objects (functionally) with ex-
pressions like exp1 with (O)field2 = exp2.

The bibliography format in BoVeX consists of dec-
larations like this.

val knuth1981breaking =
 bib-article {(Article)
 title = "Breaking paragraphs into lines",
 author = "Knuth, Donald E. and Plass, Michael F.",
 journal = "Software: Practice and Experience",
 page-start = 1119,
 page-end = 1184,
 year = 1981,
 month = NOVEMBER,
 publisher = "Wiley Online Library",
}

Each reference declares a set of optional fields. It is
too tedious to make each field explicitly optional,
and since the data have heterogeneous types, ma-
nipulating a string-indexed data structure would
be more cumbersome. The bibliography rendering
code case analyzes the presence of fields to render
citations that have different subsets of data.

The paper.bovex source file is a tree structure with
optional attributes on each node, which are repre-
sented with an object. This paragraph is written in
the layout type. Another use is in the layout type.
This is a primitive type that most of a document’s
text is written in.

Another use is in the [tt[layout]] type.
This is a primitive type that most of a
document’s text is written in. It is a
tree structure with optional attributes
on each node, which are represented with
an object. For example, this paragraph is
written in the [tt[paper.bovex]] source
file as:

The square brackets are used to write a layout lit-
eral (the main body of the document is inside one
large literal). Layout literals can also embed expres-
sions (of type layout) with nested square brackets.
Here the function tt is applied to a layout literal
that contains text like paper.bovex. The tt func-
tion just adds the font-family attribute with value
"FixederSysLight" to the layout node. This is a
custom monospaced bitmap font that I made for
this paper using software I wrote. It is part of the
FixederSys family.[25] Functions like b and it ap-
ply bold and italic text styles, but functions can do
anything that you can do in a general-purpose pro-
gramming language.

Primops

Objects are used for interfacing with the runtime
that executes BoVeX bytecode. There are about 50
different built-in primops that can be used by Bo-
VeX programs. These include simple operations
such as addition, but also heavyweight operations
such as “load and register this collection of True-
Type font files as a font family” or “invoke the
boxes-and-glue packing algorithm with these para-
meters.” Primops in the former category work nat-
urally on simple base types, but primops in the lat-
ter category need to be able to pass complicated
tree-structuredheterogeneous data between the Bo-
VeX bytecode executor and the runtime. It would
be possible for the runtime to consume and create
BoVeX values like tuples and lists, but this has two
problems: one, many types like list are declared as
user code (in the BoVeX standard library); they are
not special, and we don’t want to make them spe-
cial by informing the runtime of them. Two, requir-
ing specific representations at the runtime bound-
ary inhibits optimization; for example, we can nor-
mally analyze the whole program to flatten data
structures or remove record fields that are never
used. The runtime typically uses obj to communi-
cate structured data.

For example, the pack-boxes primitive runs the
boxes-and-glue algorithm. It takes some layout
(which is expected to be a series of box nodes, with
attributes giving their size, glue properties, and
so on) and configuration parameters like the type
of justification and algorithm to use. It returns an
object with a new layout (the boxes grouped into
lines, with new glued up widths) as well as the to-
tal badness. Inside the BoVeX layout support code,
this primop is wrapped as pack-boxes with a na-
tive, typed interface, so programmers do not need
to think about that implementation detail. Other ty-
pographic features that benefit from runtime sup-
port are implemented this way as well.

Typographic features

The pack-boxes algorithm, which is offered by Bo-
VeX, can be used to nicely justify text. It can also
be used to distribute paragraphs into columns, by
thinking of the paragraphs as “words” (acceptable
to break at any line, but bad to break near the start
or end of a paragraph) and the columns as “lines.”
It could be used by the document author for other
purposes, I guess. There are other typographic fea-
tures available.

The BoVeX layout pipeline is a bit like a compiler.
It takes programmer-written source layout and
transforms it into formatted paragraphs, then into
boxes of known size, then into stickers of known
position. Once the final placement is known, boxes
become stickers, which are sizeless elements that
only know their position and contents. The height
of resulting lines are measured, and spaced accord-
ing to the line spacing, then packed into columns.
At the end, the BoVeX layout pipeline outputs the
document as a PDF.

The rendering process can report “badness” by
calling the emit-badness primop. Badness is mea-
sured in square points of area that are outside of
the container. Worse situations—such as text over-
lapping other text—have their badness scaled up
per the same area of typographic horror. Less seri-
ous infractions—such as a little too much space be-
tween words—have badness scaled down.

Fonts

BoVeX can render your document in plain Times
Roman if you don’t care about anything, or it can
load 13 other boring PDF fonts, or it can load any
TrueType font from font files. (They do not need
to be “installed,” and it won’t help to install them.
You just put them in the directory with your doc-
ument.) It loads their kerning tables and applies
kerning properly, by generating rigid boxes at the
sub-word level with unbreakable glue. I was disap-
pointed to find that most fonts include only a few
dozen kerning pairs. They do this in order to “save
space” in the font file, which is utterly rich coming
from someone that would try to save space inside
of words by squeezing letters together! In the cur-
rent font Palatino, the word “BoVeX” is not kerned
correctly because the rare bigraph “oV” does not
have a kerning pair. I hope to improve this detail
in a future version (perhaps for the presumably
forthcoming video version of this paper).

Hyphenation

In A.D. 1455, Johannes Gutenberg invented the hy-
phen for his Gutenberg Bible, then just known as
Bible.[26] His printing process required the lines to
all be the same length, so he had to stick these lit-
tle guys all over the place. His hyphens looked like
this: . Later on we straightened these out and de-
cided we only needed one at a time, and today we
use them not because we require our lines to all be
the same length, but because we like the cognitive
challenge of remembering the beginning of the

word while we move our eyes to the beginning of
the next line while reading.

BoVeX supports hyphenation using the same ap-
proach as TeX: We break each word into boxes at
legal hyphenation points, and mark these points as
sort-of-bad to break, and that if you do, you need
to insert the hyphen character and use a little more
space. By default in BoVeX, the hyphen sticks out
of the end of the line a little bit. This is actually a
bug but I like it.

The hyphenation algorithm I use is the same as
the one used by TeX, which is cleverly represented
as a prioritized set of patterns in order to fit com-
pactly in memory.[27] Again, you have to respect
Knuth and crew’s attention to detail, although to
be fair this algorithm also dates to a time when
storing a spell check dictionary in a computer’s
memory was described as “not feasible.” So some
of this was out of necessity. One of the nice things
about the representation is that it generalizes to
words that were not in the 1974 Merriam-Webster
Pocket Dictionary. For example it hyphenates SIG-
BOVIK correctly.

The details really go on and on. The hyphenation
dictionary is stored in a file called hyph-en-us.tex.
“hyph” here, of course, stands for hyphens, and
“en-us” means “English (United States).” In fact it
is the standard language code for US English in the
Small Language Model called IETF BCP 47.[28] But
then we have “hyph-en”, which is a plausible hy-
phenation of “hyphen”! You could even read it as
“hyphen us, tex”, as a request for TeX to hyphen-
ate the words in this file. This is the kind of detail
I’m talking about! (There is also hyph-uk, which
for once sounds a little less dignified than the US
accent.)

Rephrasing

The BoVeX LLM can be used to rephrase text in or-
der to make it more beautiful.

Unlike monospaced text, a line of proportional text
never fits exactly (badness 0), so we need to apply
some glue to make it fit. This generally has a cost,
even when the text looks great.

One of the fiddliest parts of this is that we can’t
just work with plain text, which is what the LLM
enjoys best. Me too. This is because the paragraph
being rephrased is some layout value, which con-
tains some structure. Sending the original BoVeX

code for the paragraph would maybe be possible
in principle, although it would require very inva-
sive changes to the compiler, and forbidden ob-
scenities like “eval” to run the code it generated,
and much better error recovery for the presumably
vigorous stream of broken BoVeX code generated
by the LLM. So I didn’t try that. Instead, I gener-
ate a textual representation for the paragraph to be
rephrased, and feed that to the LLM. The prompt
looks like this:

Exercise in rephrasing text. The following para-
graph, which appears between <P> and </P>
tags, needs to be rephrased so that it retains its
precise meaning, but with minor variations in the
specific choice of words, punctuation, and so on.
No new facts should be introduced or removed,
and all the ideas from the original paragraph
should appear. However, it is good to use syn-
onyms and change the word order and phrasing.

The text contains markup as well. There are two
types: text goes here
and . These should be
preserved in the rephrased text. tags
absolutely need to be retained and should not
change their sources, although it is permissible
to move them around in the text. should
generally be retained, but the contents could
change. The classes of spans may not change,
and only the classes that appear in the original
text may be used.

The first part is basically the same as what I used
for the monospaced version, except that I ask the
LLM to delimit the paragraph. This is important
so that I know when it thinks it’s done, and seems
to work better than looking for newlines or the
end-of-streamtoken. The second part is new. I trans-
late the layout into plain text where uninterpreted
subtrees are replaced with .
These are generally boxes whose contents are not
text. This could be an actual inline image or lay-
out used to control rendering, like some bit of hor-
izontal space. Nodes that are used to set text prop-
erties of the subtrees with attributes (like fonts, col-
ors, sizes, etc.) are translated into distinct classes and
marked up with
The LLM has seen plenty of HTML, so it’s able to
use these reasonably well.

After generating a rephrasing, I parse the output
HTML and match it up with the original layout.
If I find any broken HTML, it is rejected. If I find
any tag referencing a src not in the original,
it is rejected. If I find any tag referencing a
class not in the original, it is rejected. The more

complexity that the original layout has, the higher
the chance of a rejection, but rephrasing generally
succeeds. But rejecting samples slows us down, so I
leave off the second part of the prompt in the com-
mon case that the input paragraph is plain text.
That way the LLM doesn’t even try using markup.

BoVeX can rephrase the text with HTML and orig-
inal layout matched up. It preserves nested layout
and attributes. The rendering process continues.

However, we can’t just use the badness score to
tell us how good our rephrasing is. The badness
score is a measure of how bad the line breaks are,
and it doesn’t tell us anything about how good the
rephrasing is. We need to find a way to combine
the badness score with the probability of the text
we generated to tell us how good our rephrasing
is overall. We can call 1 - p the semantic loss. Com-
bining those two somehow tells us how bad this
is overall, and of course we want to find a rephras-
ing that minimizes the overall badness.

I wish I could tell you I solved this one with a beau-
tiful algorithm. But so far, I just have something
reasonable that works. I generate many different
rephrasings, with their semantic loss, and run each
of them through the boxes-and-glue algorithm to
get the typographic badness. I choose the one that
optimizes the preferred tradeoff between semantic
loss and typographic badness. This process is con-
trolled by BoVeX code, which is in the source code
of this very paper. Knuth has a very low tolerance
for semantic loss, and knows that his algorithms
produce good results without rephrasing. Lorem
Epsom just wants it to look good and sound good.
Both have published in SIGBOVIK 2024.

How to generate many different rephrasings? The
simplest thing would be to sample randomly, like
we did for the monospaced version. But since we
prefer rephrasings that maximize probability, it
is better to explore them systematically. Consider
the model at the end of the prompt to be the root
of an infinite tree. Each node in the tree represents
an LLM state (sequence of previous tokens) and its
children are the possible next tokens. Each of these
tokens has a probability. All the model does is al-
low us to access that probability distribution for
a node. Each possible rephrasing is a path in this
tree that ends with </P>. We begin by sampling the
most likely (as far as we know) path: At each node
we see, we take the first (most probable) token.
This is our first rephrasing, and it usually matches
the original text exactly. Say that we “skipped”

probability mass if we sampled a token that is less
probable than it. We compute the semantic loss as
the average probability mass skipped over all the
tokens in the path. For this first path, we always
took the most probable token, so this is 0.0 by de-
finition.

The next path we explore will diverge from this
path at some node (maybe the root). We pick a
node that is likely to result in a good final loss, by
scoring each node in the tree. The score is the aver-
age probability of all ancestor nodes times the prob-
ability of the next highest-probability token that
we have not yet explored. The node with the high-
est overall score is the one we expand, by choosing
that next highest-probability token. We are now in
an unexplored part of the tree, and so we sample
the most probable nodes repeatedly until we reach
</P>. Speaking of which, BoVeX has a heck of a
time trying to rephrase these last few paragraphs
because they literally contain the text </P> in them.

The scores should be seen as heuristic. We would
get different results by choosing different ways
of computing the score. This is an example of a
“beam search” algorithm, which is good because
it connects this project again to Super Metroid. As
described in the earlier excerpt from the speedrun
document that inspired this work, one of the final
things you do in that game is acquire the “hyper
beam” to defeat Mother Brain.

Since we will run the boxes and glue algorithm
on multiple related texts, I generalized that algo-
rithm to work on tree-structured input. This is
clean; the memo table keeps the same dimensions,
but records an additional fact. Now we store the
penalty, whether to break after this token, and
what the best subtree is. We have to consult each
subtree when computing the score for a node, but
this does not affect the asymptotic runtime. The ta-
ble size is still at most O(n2), and although we ex-
plore more children per node, branches in the tree
reduce the maximum depth to the root, which ac-
tually reduces one of the factors of n to log(n) as
the tree becomes complete. However, as the SIG-
BOVIK deadline crept upon us, I never actually
hooked this functionality up. It would require ad-
ditional (programming) work to merge the trees,
and the layout process is so fast that it doesn’t mat-
ter; I can easily run the full layout algorithm on
hundreds of rephrasings per paragraph.

I would like to improve the algorithm, because it
does seem like there should be a way to integrate

the boxes-and-glue dynamic programming algo-
rithm with the path extension algorithm so that
we prioritize exploring nodes that are likely to gen-
erate the best balance of typographic and seman-
tic quality. It won’t be as satisfyingly optimal as
boxes-and-glue itself because we have incomplete
information (we never know whether one of the
exponentially many paths starts out with improb-
able tokens but then ends with a miracle streak of
probable tokens). But it can certainly be more sat-
isfying. Knuth would not stop here (but this is an
Any% Knuth speedrun).

I spent my time implementing an achievement sys-
tem in BoVeX. The first time certain conditions are
met, the system awards you an achievement and
prints a nice color trophy on your terminal. For ex-
ample, you can get the “Not bad” achievement for
generating a document that is at least 5 pages and
has less than 1000 badness per page.

Advantages of rephrasing

The manual rephrasing of trivial details, such as
synonyms, can be eliminated. For example, when
I wrote the opening paragraph of this paper and
listed a variety of trivial details, I might not need
to think of different ways to say “unconcerned.” I
could just write “unconcerned” each time and let
the typographic considerations determine which
synonym to use each time.

Conclusion

This paper—and with this paper—present BoVeX,
a new computer typesetting system. It follows the
tradition of TeX, but with modern amenities such
as requiring over 128 gigabytes of RAM. Though
some may consider the addition of AI features to
TeX to be an unnecessary perversion, I find this
use of LLMs to be fully justified.

Future work

Typographic features. Footnotes are desirable. It
is hard to write a paper without them. Where am I
supposed to put the bonus digressions? The layout
of footnotes is tricky and should be part of a gen-
eral floating figure implementation. End notes are
easy, but I don’t want them. I want them to be lit-
tle footnotes so that you can’t help but read them.

The SIGBOVIK program committee does not sup-
port page numbers, and this is good because page
numbers are forbidden by BoVeX.

TeX is famous for its mathematical typesetting
as well. It would fit neatly into BoVeX in the
same way, since both use the same fundamen-
tal boxes-and-glue engine. BoVeX does not have
"macros" or "modes" like TeX, but it would work
cleanly to write a BoVeX function "math" (or, if
you like, "$") that parses a custom syntax. In fact it
would be natural to have different parsers for dif-
ferent maths, so that you don't need to parse "->"
as "minus greater than" in mathematical contexts
that don't use minus or greater than at all.

Optimization. There are many opportunities
to make BoVeX code faster. This is mostly impor-
tant for when it is being run in a loop in order to
try out many different rephrasings of the same
text. (That said, I do not wish to preclude what
could be done with BoVeX by assuming its execu-
tion is doing only typesetting tasks. For example,
shouldn’t you be able to challenge your paper’s re-
viewers to a game of chess against a strong engine
embedded within your document?) The first thing
to fix is that it manipulates too many strings at run-
time (e.g. the code, record labels, object fields, and
“registers”). This is easy to fix since these are all
known at compile time. There are lots of high-level
optimizations left to do for the IL code (common
subexpression elimination, constant argument re-
moval, uncurrying, etc.) and lots of peephole and
control-flow optimizations left to do for the byte-
code (currently no optimizations are performed
at all). All of this becomes more important if I add
another planned feature, which is the ability for
the document to be globally optimized by apply-
ing a black-box optimizer to a set of user-specified
parameters. For example, the column width, line
spacing, or font size could be tweaked to make the
document fit better. This feature is “Auto-Margin
Plus.” Things are already set up to do this pretty
straightforwardly; we would simply generate the
document over and over while searching over the
parameter space, and choose the one with the least
badness. This may also affect which rephrasings
look best. But instead I spent my precious time im-
plementing 3D text3D text .[29]

Reproducibility. The algorithm for rephraseing
text tries to find the best place to explore the next
most likely token from the probability distribution.
This expects the generation of these distributions
to be deterministic. Mathematically, inference is
deterministic (it is just a bunch of matrix multipli-
cations), so this “should work.” But in practice the
enormous calculation is performed in an unpre-

dictable order as it is executed in parallel (in mul-
tiple CPU and GPU cores). Because floating point
arithmetic is not associative (or distributive, com-
mutative, or other properties you’d like), inference
can sometimes generate different answers due to
floating point round-off error. [30] Alas, these are
not even necessarily related to the final probabil-
ities in the model, as billions of non-linear opera-
tions happen within the hidden layers of the net-
work. The effect is not particularly grave; we might
miss out on a highly likely path because the prob-
ability distribution was different the second time
we looked at it. There are already lots of ways we
might fail to find highly likely paths, so this is not
some kind of reproducibility crisis. It is mostly just
a bit unsatisfying.

Unicode support This would have been helpful
when above I decided to show you Gutenberg’s
funny hyphen, , for which I had to settle for em-
bedding a crappy hand-drawn PNG file. Instead
I could have used U+2E17, which since this exotic
codepoint it is not present in the font Palatino, you
could have experienced as . BoVeX is witten with
some Unicode support, with the main exception
being that the PDF output code only supports the
embarrassingly diminutive WinAnsiEncoding.[31]

Deadlines. Al though BoVeX itself is very fast,
rephrasing is very slow. This presents a problem
for the typical way that academic papers are writ-
ten, which is to do all the work in a coffee-fueled
fugue in the last few days before the deadline, then
stay up all night writing the paper and finding ci-
tations for the pro-forma “related work” section
which you did last but you know that the review-
ers will insist upon, and tweaking \vspace and
\begin{figure}[h!] until it fits within the page limit.
On the one hand, BoVeX does potentially free the
author from the visual tweaking process. But on
the other hand, the LLM inference for the rephras-
ing process can be quite slow, and it can take many
hours or days to fully bake a long paper! For this
reason, it may be better to change conference dead-
lines to a system where the pre-rephrasing text is
submitted. The publishers (what do they even do?)
can be the ones to execute the rephrasing in the
cloud as they produce the “camera-ready copy.”
With straightforward extensions, this would also al-
low the rephrasing to adapt to changes in the over-
all volume style, or to adjust to avoid embarrass-
ing typographic concidences with other articles in
the same volume (such as using the same notation
with a different meaning). In principle, the paper
could edit itself to respond to feedback from re-

viewers, in a way that minimizes the semantic dis-
tance from the original. This rapid feedback loop
could reduce the time to publication, perhaps to
mere months, or even weeks!

Other ways to minimize badness. The BoVeX
system allows the document author to exchange se-
mantic consistency for higher quality typography.
Although we achieve state-of-the-art results, there
are likely points that are more Pareto-efficient
than what BoVeX can reach.BoV eX uses one of
the most powerful publicly available LLMs, but
that model is limited to rewriting the text within
narrow constraints.Irrresponsible research has
demonstrated that language models are capable
of volition, taking actions and using tools to ac-
complish goals. With minor modifications, it is
likely possible to expand the Pareto frontier of the
semantic/typographic tradeoff.For example, some-
times we could improve the typographic quality
of the text without any semantic loss, by acting on
the world to make the reworded text true. Human au-
thors do this already: Earlier when I was describ-
ing internal-pack-boxes, rather than explain the
somewhat awkward implementation, I went back
and changed the already-working code so that
it would serve as a simpler example of how pri-
mops use obj, but still be truthful.Now imagine
the difficulty in typesetting a statement like “The
universe contains approximately 1,000,000,000
paperclips,” and how much more beautiful
the text could be if that number were instead
10,000,000,000,000,000,000,000,000,000,000,000,000!

In the meantime, there is an easier way to get zero
badness: Delete the whole document! As a wise
person once said, "If you can’t say something with
non-zero typographic or semantic loss, don’t say
anything at all."

Acknowledgements. I’d like to thank my advisor
Karl Crary for his help and support. 20 years ago,
we set out on an ill-fated attempt to replace LaTeX
with an SML-like language mTeX, which compiled
into TeX macros. The nesting square brackets syn-
tax was Karl’s idea, and BoVeX shares genetic ma-
terial with mTeX for sure.

See you next mission,

Tom 7

Bibliography

[31] Adobe. "PDF reference: Sixth edition". Octo-
ber 2006.

[7] You can just go to arxiv.org and click on any
random article these days.

[16] N Bijlage. "Knuth meets NTG members". NTG:
MAPS, 16. March 1996. pp. 38–49.

[3] Russ Bynum. "Bernie Sanders wants the US to
adopt a 32-hour workweek. Could workers and
companies benefit?". March 2024.

[12] https:/ / github.com/ ggerganov/ llama.cpp. gger-
anov. March 2024.

[26] Johann Gutenberg. "Bible". 1455.

[4] https:/ / allfamousbirthday.com/ donald-knuth/ .
February 2024.

[23] https:/ / ocaml.org. "The Objective Caml sys-
tem". 2023.

[21] Graham Hutton. "Higher-order functions for
parsing". Journal of functional programming, 2(3).
1992. pp. 323–343.

[5] Donald E Knuth. "The Art of Computer Pro-
gramming: Volume 4A, Combinatorial Algorithms
Part 1". Addison-Wesley. January 2011. 912 pages.

[6] Donald E Knuth. "The Art of Computer Pro-
gramming: Volume 4B, Combinatorial Algorithms
Part 2". Addison-Wesley. October 2022. 736 pages.

[15] Donald E Knuth, Michael F Plass. "Breaking
paragraphs into lines". Software: Practice and Experi-
ence, 11(11). November 1981. pp. 1119–1184.

[27] Franklin Mark Liang. "Word Hy-phen-a-tion
by Com-put-er". 1983.

[17] Robin Milner, Mads Tofte, Robert Harper,
David MacQueen. "The definition of Standard ML
(Revised)". MIT Press. May 1997. 114 pages.

[8] John C Mitchell. "Type Systems for Program-
ming Languages". Van Leeuwen, Jan, ed. Formal
Models and Semantics. 1990. pp. 365–458.

[1] Tom Murphy VII. "Badness 0 (Knuth's version)".
 SIGBOVIK. April 2024. 16 pages.

[30] Tom Murphy VII. "GradIEEEnt half decent".

SIGBOVIK. March 2023. pp. 33–56.

[18] Tom Murphy VII. "Modal Types for Mobile
Code". January 2008.

[13] Tom Murphy VII. "NaN gates and flip FLOPS".
 SIGBOVIK. April 2019.

[10] Tom Murphy VII. "The First Level of Super
Mario Bros. is Easy with Lexicographic Orderings
and Time Travel. After that it gets a little tricky".
SIGBOVIK. April 2013. pp. 112–133.

[20] Tom Murphy VII. "The Wizard of TILT: Effi-
cient(?), Convenient and Abstract Type Representa-
tions". Carnegie Mellon tech report CMU-CS-02-120.
March 2002.

[29] Tom Murphy VII. "The glEnd() of Zelda". SIG-
BOVIK. April 2016. pp. 105–112.

[14] Tom Murphy VII. "ZM~~ # PRinty# C with
ABC!". SIGBOVIK. April 2017. pp. 129–148.

[25] http:/ / tom7.org/ fixedersys/ . Tom Murphy VII.
 "The FixederSys font family". 2024.

[2] https:/ / en.wikipedia.org/ wiki/
Wikipedia:WikiProject_Punctuation. Tom Murphy
VII. "WikiProject Punctuation". July 2007.

[19] https:/ / sourceforge.net/ p/ tom7misc/ svn/ HEAD/
tree/ trunk/ rephrase/ . Tom Murphy VII. "BoVeX
source code". 2024.

[22] Chris Okasaki. "Even higher-order functions
for parsing or Why would anyone ever want to
use a sixth-order function?". Journal of Functional
Programming, 8(2). March 1998. pp. 195–199.

[28] A Phillips, M Davis. "Tags for identifying lan-
guages". September 2009.

[9] https:/ / gamefaqs.gamespot.com/ snes/
588741-super-metroid/ faqs/ 10114. rs1n. "Super
Metroid Speed Guide and FAQ". 1996.

[24] Didier Rémy, Jérôme Vouillon. "Objective ML:
An effective object-oriented extension to ML". In
Theory And Practice of Objects Systems, 4(1). 1998.
pp. 27–50.

[11] Hugo Touvron, Louis Martin, Kevin Stone, Pe-
ter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava,
Shruti Bhosale, Dan Bikel, Lukas Blecher, Crist-

ian Canton Ferrer, Moya Chen, Guillem Cucurull,
David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin
Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami,
Naman Goyal, Anthony Hartshorn, Saghar Hos-
seini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor
Kerkez, Madian Khabsa, Isabel Kloumann, Artem
Korenev, Punit Singh Koura, Marie-Anne Lachaux,
Thibaut Lavril, Jenya Lee, Diana Liskovich, Ying-
hai Lu, Yuning Mao, Xavier Martinet, Todor Mi-
haylov, Pushkar Mishra, Igor Molybog, Yixin
Nie, Andrew Poulton, Jeremy Reizenstein, Rashi
Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva,
Eric Michael Smith, Ranjan Subramanian, Xiao-
qing Ellen Tan, Binh Tang, Ross Taylor, Adina
Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan,
Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie
Kambadur, Sharan Narang, Aurelien Rodriguez,
Robert Stojnic, Sergey Edunov, Thomas Scialom.
"Llama 2: Open foundation and fine-tuned chat
models". ArXiv.org. July 2023.

